This page has been proofread, but needs to be validated.
  
ANTINOMIANS
129


acid to form a compound, Sb2Cl8(C2O4), which is to be considered as tetra-chlorstibonium oxalate (R. Anschütz and Evans, Annalen, 1887, ccxxxix. 235). Antimonyl chloride, SbOCl, is produced by the decomposition of one part of the trichloride with four parts of water. Prepared in this way it contains a small quantity of the unaltered chloride, which can be removed by ether or carbon bisulphide. It is a white powder insoluble in water, alcohol and ether. On heating, it is converted into the oxychloride Sb4O5Cl2 (Sb2O3·SbOCl). Antimony oxychloride, SbOCl3, is formed by addition of the calculated quantity of water to ice-cooled antimony pentachloride, SbCl5 + H2O = SbOCl3 + 2HCl. It forms a yellowish crystalline precipitate which in moist air goes to a thick liquid. Compounds of composition, SbOCl3·2SbCl5 and SbO2Cl·2SbOCl3, have also been described (W. C. Williams, Chem. News. 1871, xxiv. 234).

Antimony tribromide, SbBr3, and tri-iodide, SbI3, may be prepared by the action of antimony on solutions of bromine or iodine in carbon bisulphide. The tribromide is a colourless crystalline mass of specific gravity 4·148 (23°), melting at 90° to 94° C. and boiling at 275·4° C. (H. Kopp). The tri-iodide forms red-coloured crystals of specific gravity 4·848 (26°), melting at 165° to 167° C. and boiling at 401° C. By the action of water they give oxybromides and oxyiodides SbOBr, Sb4O5Br2, SbOI. Antimony penta-iodide, SbI5, is formed by heating antimony with excess of iodine, in a sealed tube, to a temperature not above 130°C. It forms a dark brown crystalline mass, melting at 78° to 79° C., and is easily dissociated on heating. Antimony trifluoride, SbF3, is obtained by dissolving the trioxide in aqueous hydrofluoric acid or by distilling antimony with mercuric fluoride. By rapid evaporation of its solution it may be obtained in small prisms. The pentafluoride SbF5 results when metantimonic acid is dissolved in hydrofluoric acid, and the solution is evaporated. It forms an amorphous gummy mass, which is decomposed by heat. Oxyfluorides of composition SbOF and SbOF3 are known.

Two sulphides of antimony are definitely known, the trisulphide Sb2S3 and the pentasulphide Sb2S5; a third, the tetrasulphide Sb2S4, has also been described, but its existence is doubtful. Antimony trisulphide, Sb2S3, occurs as the mineral antimonite or stibnite, from which the commercial product is obtained by a process of liquation. The amorphous variety may be obtained from the crystalline form by dissolving it in caustic potash or soda or in solutions of alkaline sulphides, and precipitating the hot solution by dilute sulphuric acid. The precipitate is then washed with water and dried at 100° C., by which treatment it is obtained in the anhydrous form. On precipitating antimony trichloride or tartar emetic in acid solution with sulphuretted hydrogen, an orange-red precipitate of the hydrated sulphide is obtained, which turns black on being heated to 200° C The trisulphide heated in a current of hydrogen is reduced to the metallic state; it burns in air forming the tetroxide, and is soluble in concentrated hydrochloric acid, in solutions of the caustic alkalis, and in alkaline sulphides. By the union of antimony trisulphide with basic sulphides, livers of antimony are obtained. These substances are usually prepared by fusing their components together, and are dark powders which are less soluble in water the more antimony they contain. These thioantimonites are used in the vulcanizing of rubber and in the preparation of matches. Antimony pentasulphide, Sb2S5, is prepared by precipitating a solution of the pentachloride with sulphuretted hydrogen, by decomposing “Schlippe’s salt” (q.v.) with an acid, or by passing sulphuretted hydrogen into water containing antimonic acid. It forms a fine dark orange powder, insoluble in water, but readily soluble in aqueous solutions of the caustic alkalis and alkaline carbonates. On heating in absence of air, it decomposes into the trisulphide and sulphur.

An antimony phosphide and arsenide are known, as is also a thiophosphate, SbPS4, which is prepared by heating together antimony trichloride and phosphorus pentasulphide.

Many organic compounds containing antimony are known. By distilling an alloy of antimony and sodium with mythyl iodide, mixed with sand, trimethyl stibine, Sb(CH3)3, is obtained; this combines with excess of methyl iodide to form tetramethyl stibonium iodide, Sb(CH3)4I. From this iodide the trimethyl stibine may be obtained by distillation with an alloy of potassium and antimony in a current of carbon dioxide. It is a colourless liquid, slightly soluble in water, and is spontaneously inflammable. The stibonium iodide on treatment with moist silver oxide gives the corresponding tetramethyl stibonium hydroxide, Sb(CH3)4OH, which forms deliquescent crystals, of alkaline reaction, and absorbs carbon dioxide readily. On distilling trimethyl stibine with zinc methyl, antimony tetra-methyl and penta-methyl are formed. Corresponding antimony compounds containing the ethyl group are known, as is also a tri-phenyl stibine, Sb(C6H5)3, which is prepared from antimony trichloride, sodium and monochlorbenzene. See Chung Yu Wang, Antimony (1909).

Antimony in Medicine.—So far back as Basil Valentine and Paracelsus, antimonial preparations were in great vogue as medicinal agents, and came to be so much abused that a prohibition was placed upon their employment by the Paris parlement in 1566. Metallic antimony was utilized to make goblets in which wine was allowed to stand so as to acquire emetic properties, and “everlasting” pills of the metal, supposed to act by contact merely, were administered and recovered for future use after they had fulfilled their purpose. Antimony compounds act as irritants both externally and internally. Tartar emetic (antimony tartrate) when swallowed, acts directly on the wall of the stomach, producing vomiting, and after absorption continues this effect by its action on the medulla. It is a powerful cardiac depressant, diminishing both the force and frequency of the heart’s beat. It depresses respiration, and in large doses lowers temperature. It depresses the nervous system, especially the spinal cord. It is excreted by all the secretions and excretions of the body. Thus as it passes out by the bronchial mucous membrane it increases the amount of secretion and so acts as an expectorant. On the skin its action is that of a diaphoretic, and being also excreted by the bile it acts slightly as a cholagogue. Summed up, its action is that of an irritant, and a cardiac and nervous depressant. But on account of this depressant action it is to be avoided for women and children and rarely used for men.

Toxicology.—Antimony is one of the “protoplasmic” poisons, directly lethal to all living matter. In acute poisoning by it the symptoms are almost identical with those of arsenical poisoning, which is much commoner (See Arsenic). The post-mortem appearances are also very similar, but the gastro-intestinal irritation is much less marked and inflammation of the lungs is more commonly seen. If the patient is not already vomiting freely the treatment is to use the stomach-pump, or give sulphate of zinc (gr. 10–30) by the mouth or apomorphine (gr. 1/20 – 1/10) subcutaneously. Frequent doses of a teaspoonful of tannin dissolved in water should be administered, together with strong tea and coffee and mucilaginous fluids. Stimulants may be given subcutaneously, and the patient should be placed in bed between warm blankets with hot-water bottles. Chronic poisoning by antimony is very rare, but resembles in essentials chronic poisoning by arsenic. In its medico-legal aspects antimonial poisoning is of little and lessening importance.

ANTINOMIANS (Gr. ἀντί, against, νόμος, law), a term apparently coined by Luther to stigmatize Johannes Agricola (q.v.) and his following, indicating an interpretation of the antithesis between law and gospel, recurrent from the earliest times. Christians being released, in important particulars, from conformity to the Old Testament polity as a whole, a real difficulty attended the settlement of the limits and the immediate authority of the remainder, known vaguely as the moral law. Indications are not wanting that St Paul’s doctrine of justification by faith was, in his own day, mistaken or perverted in the interests of immoral licence. Gnostic sects approached the question in two ways. Marcionites, named by Clement of Alexandria Antitactae (revolters against the Demiurge) held the Old Testament economy to be throughout tainted by its source; but they are not accused of licentiousness. Manichaeans, again, holding their spiritual being to be unaffected by the action of matter, regarded carnal sins as being, at worst, forms of bodily disease. Kindred to this latter view was the position of sundry sects of English fanatics during the Commonwealth, who denied that an elect person sinned, even when committing acts in themselves gross and evil. Different from either of these was the Antinomianism charged by Luther against Agricola. Its starting-point was a dispute with Melanchthon in 1527 as to the relation between repentance and faith. Melanchthon urged that repentance must precede faith, and that knowledge of the moral law is needed to produce repentance. Agricola gave the initial place to faith, maintaining that repentance is the work, not of law, but of the gospel-given knowledge of the love of God. The resulting Antinomian controversy (the only one within the Lutheran body in Luther’s lifetime) is not remarkable for the precision or the moderation of the combatants on either side. Agricola was apparently satisfied in conference with Luther and Melanchthon at Torgau, December 1527. His eighteen Positiones of 1537 revived the