Open main menu
This page has been proofread, but needs to be validated.

of air over the surface of the growth. Sometimes also the virulence of a bacterium for a particular kind of animal becomes lessened on passing it through the body of one of another species. Cultures of varying degree of virulence may be obtained by such methods, and immunity can be gradually increased by inoculation with vaccines of increasing virulence. The immunity may be made to reach a very high degree by ultimately using cultures of intensified virulence, this “supervirulent” character being usually attained by the method of passage already explained. A second method is by injection of the bacterium in the dead condition, whereby immunity against the living organism may be produced. Here manifestly the dose may be easily controlled, and may be gradually increased in successive inoculations. This method has a wide application. A third method is by injections of the separated toxins of a bacterium, the resulting immunity being not only against the toxin, but, so far as present knowledge shows, also against the living organism. In the development of toxin-immunity the doses, small at first, are gradually increased in successive inoculations; or, as in the case of very active toxins, the initial injections are made with toxin modified by heat or by the addition of various chemical substances. Immunity of the same nature can be acquired in the same way against snake and scorpion poisons, and against certain vegetable toxins, e.g. ricin, abrin, &c.

In order that the immunity may reach a high degree, either the bacterium in a very virulent state or a large dose of toxin must ultimately be used in the injections. In such cases the immunity is, to speak generally, specific, i.e. applies only to the bacterium or toxin used in its production. A certain degree of non-specific immunity or increased tissue resistance may be produced locally, e.g. in the peritoneum, by injections of non-pathogenic organisms, peptone, nucleic acid and various other substances. In these cases the immunity is without specific character, and cannot be transferred to another animal. Lastly, in a few instances one organism has an antagonistic action to another; for example, the products of B. pyocyaneus have a certain protective action against B. anthracis. This method has, however, not yielded any important practical application.

2. Passive Immunity: Anti-sera.—The development of active immunity by the above methods is essentially the result of a reactive process on the part of the cells of the body, though as yet we know little of its real nature. It is, however, also accompanied by the appearance of certain bodies in the blood serum of the animal treated, to which the name of anti-substances is given, and these have been the subject of extensive study. It is by means of them that immunity (passive) can be transferred to a fresh animal. The development of anti-substances is, however, not peculiar to bacteria, but occurs also when alien cells of various kinds, proteins, ferments, &c., are injected. In fact, organic molecules can be divided into two classes according as they give rise to anti-substances or fail to do so. Amongst the latter, the vegetable poisons of known constitution, alkaloids, glucosides, &c., are to be placed. The molecules which lead to the production of anti-substances are usually known as antigens, and each antigen has a specific combining affinity for its corresponding anti-substance, fitting it as a lock does a key. The antigens, as already indicated, may occur in bacteria, cells, &c., or they may occur free in a fluid. Anti-substances may be arranged, as has been done by Ehrlich, into three main groups. In the first group, the anti-substance simply combines with the antigen, without, so far as we know, producing any change in it. The antitoxins are examples of this variety. In the second group, the anti-substance, in addition to combining with the antigen, produces some recognizable physical change in it; the precipitins and agglutinins may be mentioned as examples. In the third group, the anti-substance, after it has combined with the antigen, leads to the union of a third body called complement (alexine or cytase of French writers), which is present in normal serum. As a result of the union of the three substances, a dissolving or digestive action is often to be observed. This is the mode of action of the anti-substances in the case of a haemolytic or bacteriolytic serum. So far as bacterial immunity is concerned, the anti-serum exerts its action either on the toxin or on the bacterium itself; that is, its action is either antitoxic or anti-bacterial. The properties of these two kinds of serum may now be considered.

The term “antitoxic” signifies that serum has the power of neutralizing the action of the toxin, as is shown by mixing them together outside the body and then injecting them into an animal. The antitoxic serum when Antitoxic serum.injected previously to the toxin also confers immunity (passive) against it; when injected after the toxin it has within certain limits a curative action, though in this case its dose requires to be large. The antitoxic property is developed in a susceptible animal by successive and gradually increasing doses of the toxin. In the earlier experiments on smaller animals the potency of the toxin was modified for the first injections, but in preparing antitoxin for therapeutical purposes the toxin is used in its unaltered condition, the horse being the animal usually employed. The injections are made subcutaneously and afterwards intravenously; and, while the dose must be gradually increased, care must be taken that this is not done too quickly, otherwise the antitoxic power of the serum may fall and the health of the animal suffer. The serum of the animal is tested from time to time against a known amount of toxin, i.e. is standardized. The unit of antitoxin in Ehrlich’s new standard is the amount requisite to antagonize 100 times the minimum lethal dose of a particular toxin to a guinea-pig of 250 grm. weight, the indication that the toxin has been antagonized being that a fatal result does not follow within five days after the injection. In the case of diphtheria the antitoxic power of the serum may reach 800 units per cubic centimetre, or even more. The laws of antitoxin production and action are not confined to bacterial toxins, but apply also to other vegetable and animal toxins, resembling them in constitution, viz. the vegetable toxalbumoses and the snake-venom group referred to above.

The production of antitoxin is one of the most striking facts of biological science, and two important questions with regard to it must next be considered, viz. how does the antitoxin act? and how is it formed within Action of antitoxin.the body? Theoretically there are two possible modes of action: antitoxin may act by means of the cells of the body, i.e. indirectly or physiologically; or it may act directly on the toxin, i.e. chemically or physically. The second view may now be said to be established, and, though the question cannot be fully discussed here, the chief grounds in support of a direct action may be given. (a) The action of antitoxin on toxin, as tested by neutralization effects, takes place more quickly in concentrated than in weak solutions, and more quickly at a warm (within certain limits) than at a cold temperature. (b) Antitoxin acts more powerfully when injected along with the toxin than when injected at the same time in another part of the body; if its action were on the tissue-cells one would expect that the site of injection would be immaterial. For example, the amount necessary to neutralize five times the lethal dose being determined, twenty times that amount will neutralize a hundred times the lethal dose. In the case of physiological antagonism of drugs this relationship does not hold. (c) It has been shown by C. J. Martin and Cherry, and by A. A. Kanthack and Cobbett, that in certain instances the toxin can be made to pass through a gelatine membrane, whereas the antitoxin cannot, its molecules being of larger size. If, however, toxin be mixed with antitoxin for some time, it can no longer be passed through, presumably because it has become combined with the antitoxin.

Lastly it may be mentioned that when a toxin has some action which can be demonstrated in a test-tube experiment, for example, a dissolving action on red corpuscles, this action may be annulled by previously adding the antitoxin to toxin; in such a case the intervention of the living tissues is excluded. In view of the fact that antitoxin has a direct action on toxin, we may say that theoretically this may take place in one of two ways. It may produce a disintegration of the toxin molecule, or it may combine with it to produce a body whose combining affinities are satisfied. The latter view, first advocated by