Open main menu
This page has been proofread, but needs to be validated.
179
BACTERIOLOGY

a particular bacterium had a special action in bringing about phagocytosis of that organism, and it had been found that this property was retained when the serum was heated at 55° C. It is now generally admitted that at least two distinct classes of substances are concerned in opsonic action, that thermostable immune opsonins are developed as a result of active immunization and these possess the specific properties of anti-substances in general, that is, act only on the corresponding bacterium. On the contrary the labile opsonins of normal serum have a comparatively general action on different organisms. It is quite evident that the specific immune-opsonins may play a very important part in the phenomena of immunity, as by their means the organisms are taken up more actively by the phagocytic cells, and thereafter may undergo rapid disintegration.

The opsonic action of the serum has been employed by Sir A. Wright and his co-workers to control the treatment of bacterial infections by vaccines; that is, by injections of varying amounts of a dead culture of the corresponding bacterium. The object in such treatment is to raise the opsonic index of the serum, this being taken as an indication of increased immunity. The effect of the injection of a small quantity of vaccine is usually to produce an increase in the opsonic index within a few days. If then an additional quantity of vaccine be injected there occurs a fall in the opsonic index (negative phase) which, however, is followed later by a rise to a higher level than before. If the amounts of vaccine used and the times of the injection are suitably chosen, there may thus be produced by a series of steps a rise of the opsonic index to a high level. One of the chief objects in registering the opsonic power in such cases is to avoid the introduction of additional vaccine when the opsonic index is low, that is, during the negative phase, as if this were done a further diminution of the opsonic action might result. The principle in such treatment by means of vaccines is to stimulate the general production of anti-substances throughout the body, so that these may be carried to the sites of bacterial growth, and aid the destruction of the organisms by means of the cells of the tissues. A large number of favourable results obtained by such treatment controlled by the observation of the opsonic index have already been published, but it would be unwise at present to offer a decided opinion as to the ultimate value of the method.

Active immunity has thus been shown to be associated with the presence of certain anti-substances in the serum. After these substances have disappeared, however, as they always do in the course of time, the animal still possesses immunity for a varying period. This apparently depends upon some alteration in the cells of the body, but its exact nature is not known.

The destruction of bacteria by direct cellular agency both in natural and acquired immunity must not be overlooked. The behaviour of certain cells, especially leucocytes, in infective conditions led Metchnikoff to place Phago-
cytosis.
great importance on phagocytosis. In this process there are two factors concerned, viz. the ingestion of bacteria by the cells, and the subsequent intracellular digestion. If either of these is wanting or interfered with, phagocytosis will necessarily fail as a means of defence. As regards the former, leucocytes are guided chiefly by chemiotaxis, i.e. by sensitiveness to chemical substances in their surroundings—a property which is not peculiar to them but is possessed by various unicellular organisms, including motile bacteria. When the cell moves from a less to a greater degree of concentration, i.e. towards the focus of production, the chemiotaxis is termed positive; when the converse obtains, negative. This apparently purposive movement has been pointed out by M. Verworn to depend upon stimulation to contraction or the reverse. Metchnikoff showed that in animals immune to a given organism phagocytosis is present, whereas in susceptible animals it is deficient or absent. He also showed that the development of artificial immunity is attended by the appearance of phagocytosis; also, when an anti-serum is injected into an animal, the phagocytes which formerly were indifferent might move towards and destroy the bacteria. In the light of all the facts, however, especially those with regard to anti-bacterial sera, the presence of phagocytosis cannot be regarded as the essence of immunity, but rather the evidence of its existence. The increased ingestion of bacteria in active immunity would seem to depend upon the presence of immune opsonins in the serum. These, as already explained, are true anti-substances. Thus the apparent increased activity of the leucocytes is due to a preliminary effect of the opsonins on the bacteria. We have no distinct proof that there occurs in active immunity any education of the phagocytes, in Metchnikoff’s sense, that is, any increase of the inherent ingestive or digestive activity of these cells. There is some evidence that in certain cases anti-substances may act upon the leucocytes, and to these the name of “stimulins” has been given. We cannot, however, say that these play an important part in immunity, and even if it were so, the essential factor would be the development of the substances which act in this way. While in immunity there probably occurs no marked change in the leucocytes themselves, it must be admitted that the increased destruction of bacteria by these cells is of the highest importance. This, as already pointed out, depends upon the increase of opsonins, though it is also to be noted that in many infective conditions there is another factor present, namely a leucocytosis, that is, an increase of the leucocytes in the blood, and the defensive powers of the body are thereby increased. Evidence has been brought forward within recent years that the leucocytes may constitute an important source of the antagonistic substances which appear in the serum. Much of such evidence possesses considerable weight, and seeing that these cells possess active digestive powers it is by no means improbable that substances with corresponding properties may be set free by them. To ascribe such powers to them exclusively is, however, not justifiable. Probably the lining endothelium of the blood-vessels as well as other tissues of the body participate in the production of anti-substances.

The subject of artificial immunity has occupied a large proportion of bacteriological literature within recent years, and our endeavour has been mainly to indicate the general laws which are in process of evolution. Natural immunity.When the facts of natural immunity are examined, we find that no single explanation is possible. Natural immunity against toxins must be taken into account, and, if Ehrlich’s view with regard to toxic action be correct, this may depend upon either the absence of chemical affinity of the living molecules of the tissues for the toxic molecule, or upon insensitiveness to the action of the toxophorous group. It has been shown with regard to the former, for example, that the nervous system of the fowl, which possesses immunity against tetanus toxin, has little combining affinity for it. The non-sensitiveness of a cell to a toxic body when brought into immediate relationship cannot, however, be explained further than by saying that the disintegrative changes which underlie symptoms of poisoning are not brought about. Then as regards natural powers of destroying bacteria, phagocytosis aided by chemiotaxis plays a part, and it can be understood that an animal whose phagocytes are attracted by a particular bacterium will have an advantage over one in which this action is absent. Variations in chemiotaxis towards different organisms probably depend in natural conditions, as well as in active immunity, upon the opsonic content of the serum. Whether bacteria will be destroyed or not after they have been ingested by the leucocytes will depend upon the digestive powers of the latter, and these probably vary in different species of animals. The blood serum has a direct bactericidal action on certain bacteria, as tested outside the body, and this also varies in different animals. Observations made on this property with respect to the anthrax bacillus at first gave the hope that it might explain variations in natural immunity. Thus the serum of the white rat, which is immune to anthrax, kills the bacillus; whereas the serum of the guinea-pig, which is susceptible, has no such effect. Further observations, however, showed that this does not hold as a general law. The serum of the susceptible rabbit, for example, is bactericidal to this organism, whilst the serum of the immune dog is not. In the case of the latter animal the serum