Open main menu
This page has been proofread, but needs to be validated.
628
BEE

for those functions which are possessed in perfection by the workers. The differentiation of queen and workers is correlated with the habit of storing food supplies, and the consequent permanence of the community, which finds relief for its surplus population by sending off a swarm, consisting of a queen and a number of workers, so that the new community is already specialized both for reproduction and for labour.


1911 Britannica - Bee - Legs.png
Fig. 7.—Modifications in the Legs of Bees.
A. a-d, Hive-bee (Apis). d, Fore-leg of Apis showing notch in
B. f-g, Stingless bee (Melipona).    tarsal segment for cleaning feeler.
C. h-i, Humble-bee (Bombus). e, Tip of intermediate shin with spur.
a, f, h, Outer view of hind-leg. c, Feathered hairs with pollen grains,
b, g, i, Inner view.    magnified.

(After Riley, Insect Life (U.S. Dept. Agr.), vol. 6.)


The workers of Apis may be capable (fig. 6, C) of laying eggs—necessarily unfertilized—which always give rise to males (“drones”), and, since the researches of J. Dzierzon (1811-1906) in 1848, it has been believed that the queen bee lays fertilized eggs in cells appropriate for the rearing of queens or workers, and unfertilized eggs in “drone-cells,” virgin reproduction or parthenogenesis being therefore a normal factor in the life of these insects. F. Dickel and others have lately claimed that fertilized eggs can give rise to either queens, workers or males, according to the food supplied to the larvae and the influence of supposed “sex-producing glands” possessed by the nurse-workers. Dickel states that a German male bee mated with a female of the Italian race transmits distinct paternal characters to hybrid male offspring. A. Weismann, however, doubts these conclusions, and having found a spermaster in every one of the eggs that he examined from worker-cells, and in only one out of 272 eggs taken from drone-cells, he supports Dzierzon’s view, explaining the single exception mentioned above as a mistake of the queen, she having laid inadvertently this single fertilized egg in a drone instead of in a worker cell.

The cells of the honeycomb of Apis are usually hexagonal in form, and arranged in two series back to back (figs. 3, 25). Some of these cells are used for storage, others for the rearing of brood. The cells in which workers are reared are smaller than those appropriate for the rearing of drones, while the “royal cells,” in which the young queens are developed, are large in size and of an irregular oval in form (fig. 25). It is believed that from the nature of the cell in which she is ovipositing, the queen derives a reflex impulse to lay the appropriate egg—fertilized in the queen or worker cell, unfertilized in the drone cell, as previously mentioned. Whether the fertilized egg shall develop into a queen or a worker depends upon the nature of the food. All young grubs are at first fed with a specially nutritious food, discharged from the worker’s stomach, to which is added a digestive secretion derived from special salivary glands in the worker’s head. If this “royal jelly” continue to be given to the grub throughout its life, it will grow into a queen; if the ordinary mixture of honey and digested pollen be substituted, as is usually the case from the fourth day, the grub will become a worker. The workers, who control the polity of the hive (the “queen” being exceedingly “limited” in her monarchy), arrange if possible that young queens shall develop only when the population of the hive has become so congested that it is desirable to send off a swarm. When a young queen has emerged, she stings her royal sisters (still in the pupal stage) to death. Previous to the emergence of the young queen, the old queen, prevented by the workers from attacking her daughters, has led off a swarm to find a new home elsewhere. The young queen, left in the old home, mounts high into the air for her nuptial flight, and then returns to the hive and her duties of egg-laying. The number of workers increases largely during the summer, and so hard do the insects work that the life of an individual may last only a few weeks. On the approach of winter the males, having no further function to perform for the community, are refused food-supplies by the workers, and are either excluded or banished from the hive to perish. Such ruthless habits of the bee-commonwealth, no less than the altruistic labours of the workers, are adapted for the survival and dominance of the species. The struggle for life may deal hardly with the individual, but it results—to quote Darwin’s well-known title—in “the preservation of favoured races.”

Bibliography.—More has been written on bees, and especially on the genus Apis, than on any other group of insects. The classical observations of Réaumur Mémoires pour servir à l’histoire des insectes, vols. v., vi. (Paris, 1740-1742) and F. Huber’s Nouvelles observations sur les abeilles (Genéve, 1792) will never be forgotten; they have been matched in recent times by J. H. Fabre’s Souvenirs entomologiques (Paris, 1879-1891); and M. Maeterlinck’s poetic yet scientific La vie des abeilles (Paris, 1901). Among writers on the solitary and parasitic species may be specially mentioned F. Smith, Hymenoptera in the British Museum (London, 1853-1859); H. Friese, Zool. Jahrb. Syst., iv. (1891) J. Pérez, Actes Soc. Bordeaux, xlviii. (1895); and C. Verhoeff, Zool. Jahrb. Syst., vi. (1892). For the social species we have valuable papers by E. Hoffer, Mitt. Naturwissen. Ver. Steiermark, xxxi. (1881); H. von Jhering, Zool. Jahrb. Syst., xix. (1903); and others. For recent controversy on parthenogenesis in the hive bee, see J. Pérez, Ann. Sci. Nat. Zool. (6), vii. (1878); F. Dickel, Zool. Anz., xxv. (1901), and Anatom. Anzeiger, xix. (1902); A. Petrunkevich, Zoolog. Jahrb. Anat., xiv. (1901); and A. Weismann, Anatom. Anzeiger, xviii. (1901). F. R. Cheshire’s Bees and Bee-keeping (London, 1885-1888), and T. W. Cowan’s Honey Bee (2nd ed., 1904), are invaluable to the naturalist, and contain extensive bibliographies of Apis. D. Sharp’s summary in the Cambridge Natural History, vol. vi., should be consulted for further information on bees generally. British bees are described in the catalogues of Smith, mentioned above, and by E. Saunders, The Hymenoptera of the British Islands (London, 1896).

 (G. H. C.) 


Bee-Keeping


1911 Britannica - Bee - Sign.png
Fig. 8.—Sign of
the king of
Lower Egypt;
from the coffin
of Mykerinos,
3633 B.C.
(British
Museum).

Bee-keeping, or the cultivation of the honey-bee as a source of income to those who practise it, is known to have existed from the most ancient times. Poets, philosophers, historians and naturalists (among whom may be mentioned Virgil, Aristotle, Cicero and Pliny) have eulogized the bee as unique among insects, endowed by nature with wondrous gifts beneficial to