This page has been validated.
702
BRYOPHYTA
  

The cells of the capsule wall have incomplete, brown, thickened rings on their walls, and the capsule opens by splitting into four valves, which bend away from one another, allowing the loose spores to be readily dispersed by the wind, assisted by the hygroscopic movements of the elaters. On falling upon damp soil the spores germinate, growing into a thallus, which gradually attains its full size and bears sexual organs.


Fig. 4.—Semi-diagrammatic figures of young embryos of Liverworts in longitudinal section. The cells which will produce the sporogenous tissue are shaded. (After Kienitz-Gerloff and Leitgeb.)

  A, Riccia.
  B, Marchantia polymorpha.
  C, Pellia epiphylla.
  D, Anthoceros laevis.
  E, Cephalozia bicuspidata.
  F, Radula complanata.

While the general course of the life-history of all liverworts resembles that of Pellia, the three great groups into which they are divided differ from one another in the characters of both generations. Each group exhibits a series leading from more simple to more highly organized forms, and the differentiation has proceeded on distinct and to some extent divergent lines in the three groups. The Marchantiales are a series of thalloid forms, in which the structure of the thallus is specialized to enable them to live in more exposed situations. The lowest members of the series (Riccia) possess the simplest sporogonia known, consisting of a wall of one layer of cells enclosing the spores. In the higher forms a sterile foot and seta is present, and sterile cells or elaters occur with the spores. The lower members of the Jungermanniales are also thalloid, but the thallus never has the complicated structure characteristic of the Marchantiales, and progress is in the direction of the differentiation of the plant into stem and leaf. Indications of how this may have come about are afforded by the lower group of the Anacrogynous Jungermanniaceae, and throughout the Acrogynous Jungermanniacae the plant has well-marked stem and leaves. The sporogonium even in the simplest forms has a sterile foot, but in this series also the origin of elaters from sterile cells can be traced. The Anthocerotales are a small and very distinct group, in which the gametophyte is a thallus, while the sporogonium possesses a sterile columella and is capable of long-continued growth and spore production. The mode of development of the sporogonium presents important differences in the three series that may be briefly referred to here. In fig. 4 young sporogonia of a number of liverworts are shown in longitudinal section, and the archesporial cells from which the spores and elaters will arise are shaded. In Riccia (fig. 4, A) the whole mass of cells derived from the ovum forms a spherical capsule, the only sterile tissue being the single layer of peripheral cells forming the wall. In other Marchantiales (fig. 4, B) the lower half of the embryo separated by the first transverse wall (1, I) forms the sterile foot and seta, while in the upper half (ka) the peripheral layer forms the wall of the capsule, enclosing the archesporial cells from which spores and elaters arise. In the Jungermanniales (fig. 4, C, E, F) the embryo is formed of a number of tiers of cells, and the archesporium is defined by the first divisions parallel to the surface in the cells of one or more of the upper tiers; a number of tiers go to form the seta and foot, while the lowest segment (a) usually forms a small appendage of the latter. In the Anthocerotales (fig. 4, D) the lowest tiers form the foot, and the terminal tier the capsule. The first periclinal divisions in the cells of the terminal tier separate a central group of cells which form the sterile columella (col). The archesporium arises by the next divisions in the outer layer of cells, and thus extends over the summit of the columella. In none of the liverworts does the sporogonium develop by means of an apical cell, as is the rule in mosses.

Leaving details of form and structure to be considered under the several groups, some general features of the Hepaticae may be looked at here in relation to the conditions under which the plants live. The organization of the gametophyte stands in the closest relation to the factors of light and moisture in the environment. With hardly an exception the liverworts are dorsiventral, and usually one side is turned to the substratum and the other exposed to the light. In thalloid forms a thinner marginal expansion or a definite wing increasing the surface exposed to the light can be distinguished from a thicker midrib serving for storage and conduction. The leaves and stem of the foliose forms effect the same division of labour in another way. The relation of the plant to its water supply varies within the group. In the Marchantiales the chief supply is obtained from the soil by the rhizoids, and its loss in transpiration is regulated and controlled. In most liverworts, on the other hand, water is absorbed directly by the whole general surface, and the rhizoids are of subordinate importance. Many forms only succeed in a constantly humid atmosphere, while others sustain drying for a period, though their powers of assimilation and growth are suspended in the dry state. The cell-walls are capable of imbibing water rapidly, and their thickness stands in relation to this rather than to the prevention of loss of water from the plant. The large surface presented by the leafy forms facilitates the retention and absorption of water. The importance of prolonging the moistened condition as long as possible is further shown by special adaptations to retain water either between the appressed lobes of the leaves or in special pitcher-like sacs. In thalloid forms fimbriate or lobed margins or outgrowths from the surface lead to the same result. Sometimes adaptations to protect the plant during seasons of drought, such as the rolling up of the thallus in many xerophytic Marchantiales, can be recognized, but more often a prolonged dry season is survived in some resting state. The formation of subterranean tubers, which persist when the rest of the plant is killed by drought, is an interesting adaptation to this end, and is found in all three groups (e.g. in species of Riccia, Fossombronia and Anthoceros). No examples of total saprophytism or of parasitism are known, but two interesting cases of a symbiosis with other organisms which is probably a mutually beneficial one, though the nature of the physiological relation between the organisms is not clearly established, may be mentioned. Fungal hyphae occur in the rhizoids and in the cells of the lower region of the thallus of many liverworts, as in the endotrophic mycorhiza of higher plants. Colonies of Nostoc are constantly found in the Anthocerotaceae and in Blasia. In the latter they are protected by special concave scales, while in the Anthocerotaceae they occupy some of the mucilage slits between the cells of the lower surface of the thallus.

Other adaptations concern the protection of the sexual organs and sporogonia, and the retention of water in the neighbourhood of the archegonia to enable the spermatozoid to reach the ovum. In thalloid forms the sexual organs are often sunk in depressions, while in the foliose forms protection is afforded by the surrounding leaves. In addition special involucres around the archegonia have arisen independently in several series. The characters of the sporogonium have as their object the nutrition and effective distribution of the spores, and only exceptionally, as in the Anthocerotaceae, are concerned with independent assimilation. In most forms the capsule is raised above the general surface at the time of opening, usually by the rapid growth of the seta, but in the Marchantiaceae by the sporogonia being raised on a special archegoniophore. The elaters serve as lines of conduction of plastic material to the developing spores, and later usually assist in their dispersal. The spores, with few exceptions, are unicellular when shed, and may develop at once or after a resting period. In their germination a short filament of a few cells is usually developed, and the apical cell of the plant is established in the terminal cell. In other cases a small plate or mass of cells is formed. With one or two exceptions, however, this preliminary