This page has been proofread, but needs to be validated.
CETACEA
769

as fishes, although they are true mammals, with warm blood, and suckle their young.

The general form is essentially fish-like, the spindle-shaped body passing anteriorly into the head without any distinct neck, and posteriorly tapering gradually towards the extremity of the tail, which is provided with a pair of lateral, pointed expansions of skin supported by fibrous tissue, called “flukes,” forming a horizontal triangular propelling organ, notched behind in the middle line. The head is generally large, in some cases attaining more than one-third the entire length; and the mouth is wide, and bounded by stiff, immobile lips. The fore-limbs are reduced to flattened paddles, encased in a continuous skin, showing no external sign of division, and without trace of nails. There are no signs of hind-limbs visible externally. The surface of the skin is smooth and glistening, and devoid of hair, although in many species there are a few bristles in the neighbourhood of the mouth which may persist through life or be present only in the young state. Immediately beneath the skin is a thick layer of fat, held together by a mesh of tissue, constituting the “blubber,” which retains the heat of the body. In nearly all species a compressed dorsal fin is present. The eye is small, and not provided with a true lacrymal apparatus. The external ear is a minute aperture in the skin situated at a short distance behind the eye. The nostrils open separately or by a single crescentic aperture, near the vertex of the head.

The bones generally are spongy in texture, the cavities being filled with oil. In the vertebral column, the cervical region is short and immobile, and the vertebrae, always seven in number, are in many species more or less fused together into a solid mass. The odontoid process of the second cervical vertebra, when that bone is free, is usually very obtuse, or even obsolete. In a paper on the form and function of the cervical vertebrae published in the Jenaische Zeitschrift for 1905, Dr O. Reche points out that the shortening and soldering is most pronounced in species which, like the right-whales, live entirely on minute organisms, to capture which there is no necessity to turn the head at all. Accordingly we find that in these whales the whole seven cervical vertebrae are fused into an immovable solid mass, of which the compound elements, with the exception of the first and second, are but little thicker than plates. On the other hand, in the finner-whales, several of which live exclusively on fish, and thus require a certain amount of mobility in the head and neck, we find all the cervical vertebrae much thicker and entirely separate from one another. Among the dolphin group the narwhal and the white whale, or beluga, are distinguished from all other cetaceans by the great comparative length of their cervical vertebrae, all of which are completely free. In the case of the narwhal such an abnormal structure is easily accounted for, seeing that to use effectively the long tusk with which the male is armed a considerable amount of mobility in the neck is absolutely essential. The beluga, too, which is believed to feed on large and active fishes, would likewise seem to require mobility in the same region in order to effect their capture. On the other hand, the porpoise preys on herrings, pilchards and mackerel, which in their densely packed shoals must apparently fall an easy prey with but little exertion on the part of their captor, and we accordingly find all the neck-vertebrae very short, and at least six out of the seven coalesced into a solid immovable mass. None of the vertebrae are united to form a sacrum. The lumbar and caudal vertebrae are numerous and large, and, as their arches are not connected by articular processes (zygapophyses), they are capable of free motion in all directions. The caps, or epiphyses, at the end of the vertebral bodies are flattened disks, not uniting until after the animal has attained its full dimensions. There are largely developed chevron-bones on the under side of the tail, the presence of which indicates the distinction between caudal and lumbar vertebrae.

In the skull, the brain-case is short, broad and high, almost spherical, in fact (fig. 1). The supra-occipital bone rises upwards and forwards from the foramen magnum, to meet the frontals at the vertex, completely excluding the parietals from the upper region; and the frontals are expanded laterally to form the roof of the orbits. The nasal aperture opens upwards, and has in front of it a more or less horizontally prolonged beak, formed of the maxillae, premaxillae, vomer, and mesethmoid cartilage, extending forwards to form the upper jaw or roof of the mouth.

There are no clavicles. The humerus is freely movable on the scapula at the shoulder-joint, but beyond this the articulations of the limb are imperfect; the flattened ends of the bones coming in contact, with fibrous tissue interposed, allowing of scarcely any motion. The radius and ulna are distinct, and about equally developed, and much flattened, as are all the bones of the flippers. There are four, or more commonly five, digits, and the number of the phalanges of the second and third always exceeds the normal number in mammals, sometimes considerably; they present the exceptional character of having epiphyses at both ends. The pelvis is represented by a pair of small rod-like bones placed longitudinally, suspended below and at some distance from the vertebral column at the commencement of the tail. In some species, to the outer surface of these are fixed other small bones or cartilages, the rudiments of the hind-limb.

Fig. 1.—A Section of the Skull of a Black-Fish (Globicephalus melas).

PMx, Premaxilla.
Mx, Maxilla.
ME, Ossified portion of the 
mesethmoid.
an, Nostrils.
Na, Nasal.
IP, Inter-parietal.
Fr, Frontal.
Pa, Parietal.
SO, Supra-occipital.
ExO, Ex-occipital.
BO, Basi-occipital.
Sq, Squamosal.
Per, Periotic.

AS, Alisphenoid.
PS, Presphenoid.
Pt, Pterygoid.
pn, Posterior nares.
Pl, Palatine.
Vo, Vomer.
s, Symphysis of lower jaw.
id, Inferior dental canal.
cp, Coronoid process of lower jaw.
cd, Condyle.
a, Angle.
sh, Stylo-hyal.
bh, Basi-hyal.
th, Thyro-hyal.

Teeth are generally present, but exceedingly variable in number. In existing species, they are of simple, uniform character, with conical or compressed crowns and single roots, and are never preceded by milk-teeth. In the whalebone whales teeth are absent (except in the foetal condition), and the palate is provided with numerous transversely placed horny plates, forming the “whalebone.” Salivary glands are rudimentary or absent. The stomach is complex, and the intestine simple, and only in some species provided with a small caecum. The liver is little fissured, and there is no gall-bladder. The blood-vascular system is complicated by net-like expansions of both arteries and veins, or retia mirabilia, The larynx is of peculiar shape, the arytenoid cartilages and the epiglottis being elongated, and forming a tubular prolongation, which projects into the posterior nares, and when embraced by the soft palate forms a continuous passage between the nostrils and the trachea, or wind-pipe, in a more perfect manner. The brain is relatively large, round in form, with its surface divided into numerous and complex convolutions. The kidneys are deeply lobulated; the testes are abdominal; and there are no vesiculae seminales nor an os penis. The uterus is bicornuate; the placenta non-deciduate and diffuse. The two teats are placed in depressions on each side of the genital aperture. The ducts of the milk-glands are dilated during suckling into large reservoirs, into which the milk collects, and from which it is injected by the action of a muscle into the mouth of the young animal, so that sucking under water is greatly facilitated.

Whales and porpoises are found in all seas, and some dolphins and porpoises are inhabitants of the larger rivers of South America and Asia. Their organization necessitates their passing their life entirely in the water, as on land they are absolutely helpless. They have, however, to rise very frequently to the surface for the purpose of respiration; and, in relation to the upward and downward movement in the water thus necessitated, the principal instrument of motion, the tail, is expanded horizontally. The position of the nostril on the highest part of the head is important for this mode of life, as it is the only part of the body the exposure