Open main menu

Page:EB1911 - Volume 05.djvu/832

This page has been proofread, but needs to be validated.

of several Geoscolicidae, the nephridiopores indicate the segments; to each segment corresponds internally a chamber of the coelom which is separated from adjacent segments by transverse septa, which are only unrecognizable in the genus Aeolosoma and in the head region of other Oligochaeta. In the latter case, the numerous bands of muscle attaching the pharynx to the parietes have obliterated the regular partition by means of septa.

Nephridia.—The nephridia in this group are invariably coiled tubes with an intracellular lumen and nearly invariably open into the coelom by a funnel. There are no renal organs with a wide intercellular lumen, such as occur in the Polychaeta, nor is there ever any permanent association between nephridia and ducts connected with the evacuation of the generative products, such as occur in Alciope, Saccocirrus, &c. In these points the Oligochaeta agree with the Hirudinea. They also agree in the general structure of the nephridia. It has been ascertained that the nephridia of Oligochaeta are preceded in the embryo by a pair of delicate and sinuous tubes, also found in the Hirudinea and Polychaeta, which are larval excretory organs. It is not quite certain whether these are to be regarded as the remnant of an earlier excretory system, replaced among the Oligochaeta by the subsequently developed paired structures, or whether these “head kidneys” are the first pair of nephridia precociously developed. The former view has been extensively held, and it is supported by the fact that in Octochaetus the first segment of the body has a pair of nephridia which is exactly like those which follow, and, like them, persists. On the other hand, in most Oligochaeta the first segment has in the adult no nephridium, and in the case of Octochaetus the existence of a “head kidney” antedating the subsequently developed nephridia of the first and other segments has neither been seen nor proved to be absent. In any case the nephridia which occupy the segments of the body generally are first of all represented by paired structures, the “pronephridia,” in which the funnel is composed of but one cell, which is flagellate. This stage has at any rate been observed in Rhynchelmis and Lumbricus (in its widest sense) by Vezhdovský. It is further noticeable that in Rhynchelmis the covering of vesicular cells which clothes the drain-pipe cells of the adult nephridium is cut off from the nephridial cells themselves and is not a peritoneal layer surrounding the nephridium. Thus the nephridia, in this case at least, are a part of the coelom and are not shut off from it by a layer of peritoneum, as are other organs which lie in it, e.g. the gut. A growth both of the funnel, which becomes multicellular, and of the rest of the nephridium produces the adult nephridia of the genera mentioned. The paired disposition of these organs is the prevalent one among the Oligochaeta, and occurs in all of twelve out of the thirteen families into which the group is divided.

Among the Megascolicidae, however, which in number of genera and species nearly equals the remaining families taken together, another form of the excretory system occurs. In the genera Pheretima, Megascolex, Dichogaster, &c., each segment contains a large number of nephridia, which, on account of the fact that they are necessarily smaller than the paired nephridia of e.g. Lumbricus, have been termed micronephridia, as opposed to meganephridia; there is, however, no essential difference in structure, though micronephridia are not uncommonly (e.g. Megascolides, Octochaetus) unprovided with funnels. It is disputed whether these micronephridia are or are not connected together in each segment and from segment to segment. In any case they have been shown in three genera to develop by the growth and splitting into a series of original paired pronephridia. A complex network, however, does occur in Lybiodrilus and certain other Eudrilidae, where the paired nephridia possess ducts leading to the exterior which ramify and anastomose on the thickness of the body wall. The network is, however, of the duct of the nephridium, possibly ectodermic in origin, and does not affect the glandular tubes which remain undivided and with one coelomic funnel each.

The Oligochaeta are the only Chaetopods in which undoubted nephridia may possess a relationship with the alimentary canal. Thus, in Octochaetus multiporus a large nephridium opens anteriorly into the buccal cavity, and numerous nephridia in the same worm evacuate their contents into the rectum. The anteriorly-opening and usually very large nephridia are not uncommon, and have been termed “peptonephridia.”

EB1911 Chaetopoda Fig. 12.—Female reproductive system of Heliodrilus.jpg
Fig. 12.—Female reproductive system of Heliodrilus.—XI-XIV, eleventh to fourteenth segments, sperm, spermatheca; sp.o, its external orifice; sp.sac, spermathecal sac; ov, sac containing ovary; r.o, egg sac; od, oviduct.

Gonads and Gonad Ducts.—The Oligochaeta agree with the leeches and differ from most Polychaeta in that they are hermaphrodite. There is no exception to this generalization. The gonads are, moreover, limited and fixed in numbers, and are practically invariably attached to the intersegmental septa, usually to the front septum of a segment, more rarely to the posterior septum. The prevalent number of testes is one pair in the aquatic genera and two pairs in earthworms. But there are exceptions; thus a species of Lamprodrilus has four pairs of testes. The ovaries are more usually one pair, but two are sometimes present. The segments occupied by the gonads are fixed, and are for earthworms invariably X, XI, or one of them for the testes, and XIII for the ovaries The position varies in the aquatic Oligochaeta. The Oligochaeta contrast with the Polychaeta in the general presence of outgrowths of the septa in the genital segments, which are either close to, or actually involve, the gonads, and into which may also open the funnels of the gonad ducts. These sacs contain the developing sperm cells or eggs, and are with very few exceptions universal in the group. The testes are more commonly thus involved than are the ovaries. It is indeed only among the Eudrilidae that the enclosure of the ovaries in septal sacs is at all general. Recently the same thing has been recorded in a few species of Pheretima (= Perichaeta), but details are as yet wanting. We can thus speak in these worms of gonocoels, i.e. coelomic cavities connected only with the generative system. These cavities communicate with the exterior through the gonad ducts, which have nothing to do with them, but whose coelomic funnels are taken up by them in the course of their growth. There are, however, in the Eudrilidae, as already mentioned, sacs envolving the ovaries which bore their own way to the exterior, and thus may be termed coelomoducts. These sacs are dealt with later under the description of the spermathecae, which function they appear to perform. The gonad ducts are male and female, and open opposite to or, rarely, alongside of the gonads, whose products they convey to the exterior. The oviducts are always short trumpet-shaped tubes and are sometimes reduced (Enchytraeidae) to merely the external orifices. It is possible, however, that those oviducts belong to a separate morphological category, more comparable to the dorsal pores and to abdominal pores in some fishes. The sperm ducts are usually longer than the oviducts; but in Limicolae both series of tubes opening by the funnel into one segment and on to the exterior in the following segment. While the oviducts always open directly on to the exterior, it is the rule for the sperm ducts to open on to the exterior near to or through certain terminal chambers, which have been variously termed atrium and prostate, or spermiducal gland. The distal extremity of this apparatus is sometimes eversible as a penis. Associated with these glands are frequently to be found bundles or pairs of long and variously modified setae which are termed penial setae, to distinguish them from other setae sometimes but not always associated with rather similar glands which are found anteriorly to these, and often in the immediate neighbourhood of the spermathecae; the latter are spoken of as genital setae.

Spermathecae.—These structures appear to be absolutely distinctive of the Oligochaeta, unless the sacs which contain sperm and open in common with the nephridia of Saccocirrus (see Haplodrili) are similar. Spermathecae are generally present in the Oligochaeta and are absent only in comparatively few genera and species. Their position varies, but is constant for the species, and they are rarely found behind the gonads. They are essentially spherical, pear-shaped or oval sacs opening on to the exterior but closed at the coelomic end. In a few Enchytraeidae and Lumbriculidae the spermathecae open at the distal extremity into the oesophagus, which is a fact difficult of explanation. Among the aquatic Oligochaeta and many earthworms (the families Lunibricidae, Geoscolicidae and a few other genera) the spermathecae are simple structures, as has been described. In the majority of the Megascolicidae each sac is provided with one or more diverticula, tubular or oval in form, of a slightly different histological character in the lining epithelium, and in them is invariably lodged the sperm.

The spermathecae are usually paired structures, one pair to each of the segments where they occur. In many Geoscolicidae, however, and certain Lumbricidae and Perichaetidae, there are several, even a large number, of pairs of very small spermathecae to each of the segments which contain them.

In the Eudrilidae there are spermathecae of different morphological value. In figs. 12 and 13 are shown the spermathecae of the genera Hyperiodrilus and Heliodrilus, which are simple sacs ending blindly as in other earthworms, but of which there is only one median opening in the thirteenth segment or in the eleventh. In Heliodrilus the blind extremity of the spermatheca is enclosed in a coelomic sac which is in connexion with the sacs envolving the ovaries and oviducts. In Hyperiodrilus the whole spermatheca is thus included in a corresponding sac, which is of great extent. In such other genera of the family as have been examined, the true spermatheca has entirely disappeared, and the sac which contains it in Hyperiodrilus alone remains. This sac has been already referred to as a coelomoduct. Its orifice on to the exterior is formed by an involution