Open main menu
This page has been proofread, but needs to be validated.
256
CHLORITE


and the alkali metals react violently with the gas, taking fire with explosive decomposition. A. J. Balard determined the volume composition of the gas by decomposition over mercury on gentle warming, followed by the absorption of the chlorine produced with potassium hydroxide, and then measured the residual oxygen.

Chlorine peroxide was first obtained by Sir H. Davy in 1815 by the action of concentrated sulphuric acid on potassium chlorate. As this oxide is a dangerous explosive, great care must be taken in its preparation; the chlorate is finely powdered and added in the cold, in small quantities at a time, to the acid contained in a retort. After solution the retort is gently heated by warm water when the gas is liberated:—3KClO3 + 2H2SO4 = KClO4 + 2KHSO4 + H2O + ClO2. A mixture of chlorine peroxide and chlorine is obtained by the action of hydrochloric acid on potassium chlorate, and similarly, on warming a mixture of potassium chlorate and oxalic acid to 70° C. on the water bath, a mixture of chlorine peroxide and carbon dioxide is obtained. Chlorine peroxide must be collected by displacement, as it is soluble in water and readily attacks mercury. It is a heavy gas of a deep yellow colour and possesses an unpleasant smell. It can be liquefied, the liquid boiling at 9.9° C., and on further cooling it solidifies at −79° C. It is very explosive, being resolved into its constituents by influence of light, on warming, or on application of shock. It is a very powerful oxidant; a mixture of potassium chlorate and sugar in about equal proportions spontaneously inflames when touched with a rod moistened with concentrated sulphuric acid, the chlorine peroxide liberated setting fire to the sugar, which goes on burning. Similarly, phosphorus can be burned under water by covering it with a little potassium chlorate and running in a thin stream of concentrated sulphuric acid (see papers by Bray, Zeit. phys. Chem., 1906, et seq.).

Chlorine heptoxide was obtained by A. Michael by slowly adding perchloric acid to phosphoric oxide below −10° C.; the mixture is allowed to stand for a day and then gently warmed, when the oxide distils over as a colourless very volatile oil of boiling-point 82° C. It turns to a greenish-yellow colour in two or three days and gives off a greenish gas; it explodes violently on percussion or in contact with a flame, and is gradually converted into perchloric acid by the action of water. On the addition of iodine to this oxide, chlorine is liberated and a white substance is produced, which decomposes, on heating to 380° C, into iodine and oxygen; bromine is without action (see A. Michael, Amer. Chem. Jour., 1900, vol. 23; 1901, vol. 25).

Several oxy-acids of chlorine are known, namely, hypochlorous acid, HClO, chlorous acid, HClO2 (in the form of its salts), chloric acid, HClO3, and perchloric acid, HClO4. Hypochlorous acid is formed when chlorine monoxide dissolves in water, and can be prepared (in dilute solution) by passing chlorine through water containing precipitated mercuric oxide in suspension. Precipitated calcium carbonate may be used in place of the mercuric oxide, or a hypochlorite may be decomposed by a dilute mineral acid and the resulting solution distilled. For this purpose a filtered solution of bleaching-powder and a very dilute solution of nitric acid may be employed. The acid is only known in aqueous solution, and only dilute solutions can be distilled without decomposition. The solution has a pale yellow colour, and is a strong oxidizing and bleaching agent; it is readily decomposed by hydrochloric acid, with evolution of oxygen. The salts of this acid are known as hypochlorites, and like the acid itself are very unstable, so that it is almost impossible to obtain them pure. A solution of sodium hypochlorite (Eau de Javel), which can be prepared by passing chlorine into a cold aqueous solution of caustic soda, has been extensively used for bleaching purposes. One of the most important derivatives of hypochlorous acid is bleaching powder. Sodium hypochlorite can be prepared by the electrolysis of brine solution in the presence of carbon electrodes, having no diaphragm in the electrolytic cell, and mixing the anode and cathode products by agitating the liquid. The temperature should be kept at about 15° C., and the concentration of the hypochlorite produced must not be allowed to become too great, in order to prevent reduction taking place at the cathode.

Chlorous acid is not known in the pure condition; but its sodium salt is prepared by the action of sodium peroxide on a solution of chlorine peroxide: 2ClO2 + Na2O2 = 2NaClO2 + O2. The silver and lead salts are unstable, being decomposed with explosive violence at 100° C. On adding a caustic alkali solution to one of chlorine peroxide, a mixture of a chlorite and a chlorate is obtained.

Chloric acid was discovered in 1786 by C. L. Berthollet, and is best prepared by decomposing barium chlorate with the calculated amount of dilute sulphuric acid. The aqueous solution can be concentrated in vacuo over sulphuric acid until it contains 40% of chloric acid. Further concentration leads to decomposition, with evolution of oxygen and formation of perchloric acid. The concentrated solution is a powerful oxidizing agent; organic matter being oxidized so rapidly that it frequently inflames. Hydrochloric acid, sulphuretted hydrogen and sulphurous acid are rapidly oxidized by chloric acid. J. S. Stas determined its composition by the analysis of pure silver chlorate. The salts of this acid are known as chlorates (q.v.).

Perchloric acid is best prepared by distilling potassium perchlorate with concentrated sulphuric acid. According to Sir H. Roscoe, pure perchloric acid distils over at first, but if the distillation be continued a white crystalline mass of hydrated perchloric acid, HClO4·H2O, passes over; this is due to the decomposition of some of the acid into water and lower oxides of chlorine, the water produced then combining with the pure acid to produce the hydrated form. This solid, on redistillation, gives the pure acid, which is a liquid boiling at 39° C. (under a pressure of 56 mm.) and of specific gravity 1.764 (22/4)°. The crystalline hydrate melts at 50° C. The pure acid decomposes slowly on standing, but is stable in dilute aqueous solution. It is a very powerful oxidizing agent; wood and paper in contact with the acid inflame with explosive violence. In contact with the skin it produces painful wounds. It may be distinguished from chloric acid by the fact that it does not give chlorine peroxide when treated with concentrated sulphuric acid, and that it is not reduced by sulphurous acid. The salts of the acid are known as the perchlorates, and are all soluble in water; the potassium and rubidium salts, however, are only soluble to a slight extent. Potassium perchlorate, KClO4, can be obtained by carefully heating the chlorate until it first melts and then nearly all solidifies again. The fused mass is then extracted with water to remove potassium chloride, and warmed with hydrochloric acid to remove unaltered chlorate, and finally extracted with water again, when a residue of practically pure perchlorate is obtained. The alkaline perchlorates are isomorphous with the permanganates.


CHLORITE, a group of green micaceous minerals which are hydrous silicates of aluminium, magnesium and ferrous iron. The name was given by A. G. Werner in 1798, from χλωρῖτις, “a green stone.” Several species and many rather ill-defined varieties have been described, but they are difficult to recognize. Like the micas, the chlorites (or “hydromicas”) are monoclinic in crystallization and have a perfect cleavage parallel to the flat face of the scales and plates. The cleavage is, however, not quite so prominent as in the micas, and the cleavage flakes though pliable are not elastic. The chlorites usually occur as salt (H=2–3) scaly aggregates of a dark-green colour. They vary in specific gravity between 2.6 and 3.0, according to the amount of iron present. Well-developed crystals are met with only in the species clinochlore and penninite; those of the former are six-sided plates and are optically biaxial, whilst those of the latter have the form of acute rhombohedra and are usually optically uniaxial. The species prochlorite and corundophilite also occur as more or less distinct six-sided plates. These four better crystallized species are grouped together by G. Tschermak as orthochlorites, the finely scaly and indistinctly fibrous forms being grouped by the same author as leptochlorites.

Chemically, the chlorites are distinguished from the micas by the presence of a considerable amount of water (about 13%) and by not containing alkalis; from the soft, scaly, mineral talc they differ in containing aluminium (about 20%) as an essential constituent. The magnesia (up to 36%) is often in part replaced by ferrous oxide (up to 30%), and the alumina to a lesser extent by ferric oxide; alumina may also be partly replaced by chromic oxide, as in the rose-red varieties kämmererite and kotschubeite. The composition of both clinochlore and penninite is approximately expressed by the formula H8(Mg,Fe)5Al2Si3O18, and the formulae of prochlorite and corundophilite are H40(Mg,Fe)23Al14Si13O90 and H20(Mg,Fe)20Al8Si6O45 respectively. The variation in composition of these orthochlorites is explained by G. Tschermak by assuming them to be isomorphous mixtures of H4Mg3Si2O9 (the serpentine molecule) and H4Mg3Al2SiO9 (which is approximately the composition of the chlorite amesite). The leptochlorites are still more complex, and the intermixture of other fundamental molecules has to be assumed; the species recognized by Dana are daphnite, cronstedtite, thuringite, stilpnomelane, strigovite, diabantite, aphrosiderite, delessite and rumpfite.

The chlorites usually occur as alteration products of other minerals, such as pyroxene, amphibole, biotite, garnet, &c., often occurring as pseudomorphs after these, or as earthy material filling cavities in igneous rocks composed of these minerals. Many altered igneous rocks owe their green colour to the presence of secondary chlorite. Chlorite is also an important constituent of many schistose rocks and phyllites, and of chlorite-schist it is the only essential constituent. Well-crystallized specimens of the species clinochlore are found with crystals of garnet in cavities in chlorite-schist at Achmatovsk near Zlatoust, in the Urals, and at the Ala valley near Turin,