Open main menu
This page has been proofread, but needs to be validated.
512
CLIMATE AND CLIMATOLOGY

important elements as wind and rainfall. So distinctive are the larger climatic features of the great wind belts of the world, that a classification of climates according to wind systems has been suggested.[1] As the rain-belts of the world are closely associated with these wind systems, a classification of the zones by winds also emphasizes the conditions of rainfall. In such a scheme the tropical zone is bounded on the north and south by the margins of the trade-wind belts, and is therefore larger than the classic torrid zone. This trade-wind zone is somewhat wider on the eastern side of the oceans, and properly includes within its limits the equable marine climates of the eastern margins of the ocean basins, even as far north as latitude 30° or 35°. Most of the eastern coasts of China and of the United States are thus left in the more rigorous and more variable conditions of the north temperate zone. Through the middle of the trade-wind zone extends the sub-equatorial belt, with its migrating calms, rains and monsoons. On the polar margins of the trade-wind zone lie the sub-tropical belts, of alternating trades and westerlies. The temperate zones embrace the latitudes of the stormy westerly winds, having on their equator-ward margins the sub-tropical belts, and being somewhat narrower than the classic temperate zones. Towards the poles there is no obvious limit to the temperate zones, for the prevailing westerlies extend beyond the polar circles. These circles may, however, serve fairly well as boundaries, because of their importance from the point of view of insolation. The polar zones in the wind classification, therefore, remain just as in the older scheme.

Need of a Classification of Climates.—A broad division of the earth’s surface into zones is necessary as a first step in any systematic study of climate, but it is not satisfactory when a more detailed discussion is undertaken. The reaction of the physical features of the earth’s surface upon the atmosphere complicates the climatic conditions found in each of the zones, and makes further subdivision desirable. The usual method is to separate the continental (near sea-level) and the marine. An extreme variety of the continental is the desert; a modified form, the littoral; while altitude is so important a control that mountain and plateau climates are always grouped by themselves.

Marine or Oceanic Climate.—Land and water differ greatly in their behaviour regarding absorption and radiation. The former warms and cools readily, and to a considerable degree; the latter, slowly and but little. The slow changes in temperature of the ocean waters involve a retardation in the times of occurrence of the maxima and minima, and a marine climate, therefore, has a cool spring and a warm autumn, the seasonal changes being but slight. Characteristic, also, of marine climates is a prevailingly higher relative humidity, a larger amount of cloudiness, and a heavier rainfall than is found over continental interiors. All of these features have their explanation in the abundant evaporation from the ocean surfaces. In the middle latitudes the oceans have distinctly rainy winters, while over the continental interiors the colder months have a minimum of precipitation. Ocean air is cleaner and purer than land air, and is generally in more active motion.

Continental Climate.—Continental climate is severe. The annual temperature ranges increase, as a whole, with increasing distance from the oceans. The coldest and warmest months are usually January and July, the times of maximum and minimum temperatures being less retarded than in the case of marine climates. The greater seasonal contrasts in temperature over the continents than over the oceans are furthered by the less cloudiness over the former. Diurnal and annual changes of nearly all the elements of climate are greater over continents than over oceans; and this holds true of irregular as well as of regular variations. Fig. 3 illustrates the annual march of temperature in marine and continental climates. Bagdad, in Asia Minor (Bd.), and Funchal on the island of Madeira (M.) are representative continental and marine stations for a low latitude. Nerchinsk in eastern Siberia (N.) and Valentia in south-western Ireland (V.) are good examples of continental and marine climates of higher latitudes in the northern hemisphere. The data for these and the following curves were taken from Hann’s Lehrbuch der Meteorologie (1901).

EB1911 - Climate Fig. 3.—Annual March of Air Temperature.jpg
Fig. 3.—Annual March of Air Temperature.
Influence of Land and Water. (After Angot.)
M, Madeira. V, Valentia.
Bd, Bagdad. N, Nerchinsk.

Owing to the distance from the chief source of supply of water vapour—the oceans—the air over the larger land areas is naturally drier and dustier than that over the oceans. Yet even in the arid continental interiors in summer the absolute vapour content is surprisingly large, and in the hottest months the percentages of relative humidity may reach 20% or 30%. At the low temperatures which prevail in the winter of the higher latitudes the absolute humidity is very low, but, owing to the cold, the air is often damp. Cloudiness, as a rule, decreases inland, and with this lower relative humidity, more abundant sunshine and higher temperature, the evaporating power of a continental climate is much greater than that of the more humid, cloudier and cooler marine climate. Both amount and frequency of rainfall, as a rule, decrease inland, but the conditions are very largely controlled by local topography and by the prevailing winds. Winds average somewhat lower in velocity, and calms are more frequent, over continents than over oceans. The seasonal changes of pressure over the former give rise to systems of inflowing and outflowing, so-called continental, winds, sometimes so well developed as to become true monsoons. The extreme termperature changes which occur over the continents are the more easily borne because of the dryness of the air; because the minimum temperatures of winter occur when there is little or no wind, and because during the warmer hours of the summer there is the most air-movement.

Desert Climate.—An extreme type of continental climate is found in deserts. Desert air is notably free from micro-organisms. The large diurnal temperature ranges of inland regions, which are most marked where there is little or no vegetation, give rise to active convectional currents during the warmer hours of the day. Hence high winds are common by day, while the nights are apt to be calm and relatively cool. Travelling by day is unpleasant under such conditions. Diurnal cumulus clouds, often absent because of the excessive dryness of the air, are replaced by clouds of blowing dust and sand. Many geological phenomena, and special physiographic types of varied kinds, are associated with the peculiar conditions of desert climate. The excessive diurnal ranges of temperature cause rocks to split and break up. Wind-driven sand erodes and polishes the rocks. When the separate fragments become small enough they, in their turn, are transported by the winds and further eroded by friction during their journey. Curious conditions of drainage result from the deficiency in rainfall. Rivers “wither” away, or end in sinks or brackish lakes.

  1. W. M. Davis, Elementary Meteorology (Boston, 1894), pp. 334-335.