Open main menu
This page has been proofread, but needs to be validated.
575
COAL

COAL. In its most general sense the term “coal” includes all varieties of carbonaceous minerals used as fuel, but it is now usual in England to restrict it to the particular varieties of such minerals occurring in the older Carboniferous formations. On the continent of Europe it is customary to consider coal as divisible into two great classes, depending upon differences of colour, namely, brown coal, corresponding to the term “lignite” used in England and France, and black or stone coal, which is equivalent to coal as understood in England. Stone coal is also a local English term, but with a signification restricted to the substance known by mineralogists as anthracite. In old English writings the terms pit-coal and sea-coal are commonly used. These have reference to the mode in which the mineral is obtained, and the manner in which it is transported to market.

The root kol is common to all the Teutonic nations, while in French and other Romance languages derivatives of the Latin carbo are used, e.g. charbon de terre. In France and Belgium, however, a peculiar word, houille, is generally used to signify mineral coal. This word is supposed to be derived from the Walloon hoie, corresponding to the medieval Latin hullae. Littré suggests that it may be related to the Gothic haurja, coal. Anthracite is from the Greek ἄνθραξ, and the term lithanthrax, stone coal, still survives, with the same meaning, in the Italian litantrace.

It must be borne in mind that the signification now attached to the word coal is different from that which formerly obtained when wood was the only fuel in general use. Coal then meant the carbonaceous residue obtained in the destructive distillation of wood, or what is known as charcoal, and the name collier was applied indifferently to both coal-miners and charcoal-burners.

The spelling “cole” was generally used up to the middle of the 17th century, when it was gradually superseded by the modern form, “coal.” The plural, coals, seems to have been used from a very early period to signify the broken fragments of the mineral as prepared for use.

Coal is an amorphous substance of variable composition, and therefore cannot be as strictly defined as a crystallized or definite mineral can. It varies in colour from a light brown in the newest lignites to a pure black, often with Physical properties. a bluish or yellowish tint in the more compact anthracite of the older formations. It is opaque, except in exceedingly thin slices, such as made for microscopic investigation, which are imperfectly transparent, and of a dark brown colour by transmitted light. The streak is black in anthracite, but more or less brown in the softer varieties. The maximum hardness is from 2.5 to 3 in anthracite and hard bituminous coals, but considerably less in lignites, which are nearly as soft as rotten wood. A greater hardness is due to the presence of earthy impurities. The densest anthracite is often of a semi-metallic lustre, resembling somewhat that of graphite. Bright, glance or pitch coal is another brilliant variety, brittle, and breaking into regular fragments of a black colour and pitchy lustre. Lignite and cannel are usually dull and earthy, and of an irregular fracture, the latter being much tougher than the black coal. Some lignites are, however, quite as brilliant as anthracite; cannel and jet may be turned in the lathe, and are susceptible of taking a brilliant polish. The specific gravity is highest in anthracite and lowest in lignite, bituminous coals giving intermediate values (see Table I.). As a rule, the density increases with the amount of carbon, but in some instances a very high specific gravity is due to intermixed earthy matters, which are always denser than even the densest form of coal substance.

Coal is never definitely crystalline, the nearest approach to such a structure being a compound fibrous grouping resembling that of gypsum or arragonite, which occurs in some of the steam coals of South Wales, and is locally known as “cone in cone,” but no definite form or arrangement can be made out of the fibres. Usually it occurs in compact beds of alternating bright and dark bands in which impressions of leaves, woody fibre and other vegetable remains are commonly found. There is generally a tendency in coals towards cleaving into cubical or prismatic blocks, but sometimes the cohesion between the particles is so feeble that the mass breaks up into dust when struck. These peculiarities of structure may vary very considerably within small areas; and the position of the divisional planes or cleats with reference to the mass, and the proportion of small coal or slack to the larger fragments when the coal is broken up by cutting-tools, are points of great importance in the working of coal on a large scale.

The divisional planes often contain small films of other minerals, the commonest being calcite, gypsum and iron pyrites, but in some cases zeolitic minerals and galena have been observed. Salt, in the form of brine, is sometimes present in coal. Hydrocarbons, such as petroleum, bitumen, paraffin, &c., are also found occasionally in coal, but more generally in the associated sandstones and limestones of the Carboniferous formation. Gases, consisting principally of light carburetted hydrogen or marsh gas, are often present in considerable quantity in coal, in a dissolved or occluded state, and the evolution of these upon exposure to the air, especially when a sudden diminution of atmospheric pressure takes place, constitutes one of the most formidable dangers that the coal miner has to encounter.

The classification of the different kinds of coal may be considered from various points of view, such as their chemical composition, their behaviour when subjected to heat or when burnt, and their geological position and Classifica-
tion.
origin. They all contain carbon, hydrogen, oxygen and nitrogen, forming the carbonaceous or combustible portion, and some quantity of mineral matter, which remains after combustion as a residue or “ash.” As the amount of ash varies very considerably in different coals, and stands in no relation to the proportion of the other constituents, it is necessary in forming a chemical classification to compute the results of analysis after deduction of the ash and hygroscopic water. Examples of analyses treated in this manner are furnished in the last column of Table I., from which it will be seen that the nearest approach to pure carbon is furnished by Anthracite. anthracite, which contains above 90%. This class of coal burns with a very small amount of flame, producing intense local heat and no smoke. It is especially used for drying hops and malt, and in blast furnaces where a high temperature is required, but it is not suited for reverberatory furnaces.

The most important class of coals is that generally known as bituminous, from their property of softening or undergoing an apparent fusion when heated to a temperature far below that at which actual combustion takes place. Bituminous coals. This term is founded on a misapprehension of the nature of the occurrence, since, although the softening takes place at a low temperature, still it marks the point at which destructive distillation commences, and hydrocarbons both of a solid and gaseous character are formed. That nothing analogous to bitumen exists in coals is proved by the fact that the ordinary solvents for bituminous substances, such as bisulphide of carbon and benzol, have no effect upon them, as would be the case if they contained bitumen soluble in these re-agents. The term is, however, a convenient one, and one whose use is almost a necessity, from its having an almost universal currency among coal miners. The proportion of carbon in bituminous coals may vary from 80 to 90%—the amount being highest as they approach the character of anthracite, and least in those which are nearest to lignites. The amount of hydrogen is from 4½ to 6%, while the oxygen may vary within much wider limits, or from about 3 to 14%. These variations in composition are attended with corresponding differences in qualities, which are distinguished by special names. Thus the semi-anthracitic coals of South Wales are known as “dry” or “steam coals,” being especially valuable for use in marine steam-boilers, as they burn more readily than anthracite and with a larger amount of flame, while giving out a great amount of heat, and practically without producing smoke. Coals richer in hydrogen, on the other hand, are more useful for burning in open fires—smiths’ forges and furnaces—where a long flame is required.

The excess of hydrogen in a coal, above the amount necessary