This page has been proofread, but needs to be validated.
576
CRYSTALLOGRAPHY


the hexakis-octahedron and has the indices {hkl}; it is bounded by twenty-four faces. As a simple form {321} is met with in pyrites.

Fig. 36.—Combination of
Pentagonal Dodecahedron
and Cube.
Fig. 37.—Combination of
Pentagonal Dodecahedron
and Octahedron.

Combinations (figs. 36-39) of these forms with the cube and the octahedron are common in pyrites. Fig. 37 resembles in general appearance the regular icosahedron of geometry, but only eight of the faces are equilateral triangles. Cobaltite, smaltite and other sulphides and sulpharsenides of the pyrites group of minerals crystallize in these forms. The alums also belong to this class; from an aqueous solution they crystallize as simple octahedra, sometimes with subordinate faces of the cube and rhombic dodecahedron, but from an acid solution as octahedra combined with the pentagonal dodecahedron {210}.

Fig. 38.—Combination of
Pentagonal Dodecahedron, Cube
and Octahedron.
Fig. 39.—Combination of
Pentagonal Dodecahedron e
{210}, Dyakis-dodecahedron f
{321}, and Octahedron d {111}.

Plagihedral[1] Class

(Plagihedral-hemihedral; Pentagonal icositetrahedral; Gyroidal[2]).

In this class there are the full number of axes of symmetry (three tetrad, four triad and six dyad), but no planes of symmetry and no centre of symmetry.

Fig. 40.—Pentagonal
Icositetrahedron.
Fig. 41.—Tetrahedral Pentagonal
Dodecahedron.

Pentagonal icositetrahedron (fig. 40). This is the only simple form in this class which differs geometrically from those of the holosymmetric class. By suppressing either one or other set of alternate faces of the hexakis-octahedron two pentagonal icositetrahedra {hkl} and {khl} are derived. These are each bounded by twenty-four irregular pentagons, and although similar to each other they are respectively right- and left-handed, one being the mirror image of the other; such similar but nonsuperposable forms are said to be enantiomorphous (ἐναντίος, opposite, and μορφή, form), and crystals showing such forms sometimes rotate the plane of polarization of plane-polarized light. Faces of a pentagonal icositetrahedron with high indices have been very rarely observed on crystals of cuprite, potassium chloride and ammonium chloride, but none of these are circular polarizing.

Tetartohedral Class

(Tetrahedral pentagonal dodecahedral).

Here, in addition to four polar triad axes, the only other elements of symmetry are three dyad axes, which coincide with the crystallographic axes. Six of the simple forms, the cube, tetrahedron, rhombic dodecahedron, deltoid dodecahedron, triakis-tetrahedron and pentagonal dodecahedron, are geometrically the same in this class as in either the tetrahedral or pyritohedral classes. The general form is the Tetrahedral pentagonal dodecahedron (fig. 41). This is bounded by twelve irregular pentagons, and is a tetartohedral or quarter-faced form of the hexakis-octahedron. Four such forms may be derived, the indices of which are {hkl}, {khl}, {hkl} and {khl}; the first pair are enantiomorphous with respect to one another, and so are the last pair. Barium nitrate, lead nitrate, sodium chlorate and sodium bromate crystallize in this class, as also do the minerals ullmannite (NiSbS) and langbeinite (K2Mg2(SO4)3).

2. TETRAGONAL SYSTEM
(Pyramidal; Quadratic; Dimetric).

In this system the three crystallographic axes are all at right angles, but while two are equal in length and interchangeable the third is of a different length. The unequal axis is spoken of as the principal axis or morphological axis of the crystal, and it is always placed in a vertical position; in five of the seven classes of this system it coincides with the single tetrad axis of symmetry.

Fig. 42. Fig. 43.
 Tetragonal Bipyramids.

The parameters are a : a : c, where a refers to the two equal horizontal axes, and c to the vertical axis; c may be either shorter (as in fig. 42) or longer (fig. 43) than a. The ratio a : c is spoken of as the axial ratio of a crystal, and it is dependent on the angles between the faces. In all crystals of the same substance this ratio is constant, and is characteristic of the substance; for other substances crystallizing in the tetragonal system it will be different. For example, in cassiterite it is given as a : c = 1 : 0.67232 or simply as c = 0.67232, a being unity; and in anatase as c = 1.7771.

Holosymmetric Class

(Holohedral; Ditetragonal bipyramidal).

Crystals of this class are symmetrical with respect to five planes, which are of three kinds; one is perpendicular to the principal axis, and the other four intersect in it; of the latter, two are perpendicular to the equal crystallographic axes, while the two others bisect the angles between them. There are five axes of symmetry, one tetrad and two pairs of dyad, each perpendicular to a plane of symmetry. Finally, there is a centre of symmetry.

There are seven kinds of simple forms, viz.:—

Tetragonal bipyramid of the first order (figs. 42 and 43). This is bounded by eight equal isosceles triangles. Equal lengths are intercepted on the two horizontal axes, and the indices are {111}, {221}, {112}, &c., or in general {hhl}. The parametral plane with the intercepts a : a : c is a face of the bipyramid {111}.

Fig. 44. Fig. 45.
 Tetragonal Bipyramids of the first and second orders.

Tetragonal bipyramid of the second order. This is also bounded by eight equal isosceles triangles, but differs from the last form in its position, four of the faces being parallel to each of the horizontal axes; the indices are therefore {101}, {201}, {102}, &c., or {hol}.

Fig. 44 shows the relation between the tetragonal bipyramids


  1. πλάγιος, placed sideways, referring to the absence of planes and centre of symmetry.
  2. From γῦρος, a ring or spiral, and εἶδος, form.