This page has been validated.
  
DIAL
149


to C in fig. 1 corresponds to a path formed of lines in fig. 2 and extending from F to C, and the resultant of all the stresses in the links cut by the path is represented by FC in fig. 2.

Many examples of stress diagrams are given in the article on bridges (q.v.).

Automatic Description of Diagrams.

There are many other kinds of diagrams in which the two co-ordinates of a point in a plane are employed to indicate the simultaneous values of two related quantities. If a sheet of paper is made to move, say horizontally, with a constant known velocity, while a tracing point is made to move in a vertical straight line, the height varying as the value of any given physical quantity, the point will trace out a curve on the paper from which the value of that quantity at any given time may be determined. This principle is applied to the automatic registration of phenomena of all kinds, from those of meteorology and terrestrial magnetism to the velocity of cannon-shot, the vibrations of sounding bodies, the motions of animals, voluntary and involuntary, and the currents in electric telegraphs.

In Watt’s indicator for steam engines the paper does not move with a constant velocity, but its displacement is proportional to that of the piston of the engine, while that of the tracing point is proportional to the pressure of the steam. Hence the co-ordinates of a point of the curve traced on the diagram represent the volume and the pressure of the steam in the cylinder. The indicator-diagram not only supplies a record of the pressure of the steam at each stage of the stroke of the engine, but indicates the work done by the steam in each stroke by the area enclosed by the curve traced on the diagram.  (J. C. M.) 


DIAL and DIALLING. Dialling, sometimes called gnomonics, is a branch of applied mathematics which treats of the construction of sun-dials, that is, of those instruments, either fixed or portable, which determine the divisions of the day (Lat. dies) by the motion of the shadow of some object on which the sun’s rays fall. It must have been one of the earliest applications of a knowledge of the apparent motion of the sun; though for a long time men would probably be satisfied with the division into morning and afternoon as marked by sun-rise, sun-set and the greatest elevation.

History.—The earliest mention of a sun-dial is found in Isaiah xxxviii. 8: "Behold, I will bring again the shadow of the degrees which is gone down in the sun-dial of Ahaz ten degrees backward." The date of this would be about 700 years before the Christian era, but we know nothing of the character or construction of the instrument. The earliest of all sun-dials of which we have any certain knowledge was the hemicycle, or hemisphere, of the Chaldaean astronomer Berossus, who probably lived about 300 B.C. It consisted of a hollow hemisphere placed with its rim perfectly horizontal, and having a bead, or globule, fixed in any way at the centre. So long as the sun remained above the horizon the shadow of the bead would fall on the inside of the hemisphere, and the path of the shadow during the day would be approximately a circular arc. This arc, divided into twelve equal parts, determined twelve equal intervals of time for that day. Now, supposing this were done at the time of the solstices and equinoxes, and on as many intermediate days as might be considered sufficient, and then curve lines drawn through the corresponding points of division of the different arcs, the shadow of the bead falling on one of these curve lines would mark a division of time for that day, and thus we should have a sun-dial which would divide each period of daylight into twelve equal parts. These equal parts were called temporary hours; and, since the duration of daylight varies from day to day, the temporary hours of one day would differ from those of another; but this inequality would probably be disregarded at that time, and especially in countries where the variation between the longest summer day and the shortest winter day is much less than in our climates.

The dial of Berossus remained in use for centuries. The Arabians, as appears from the work of Albategnius, still followed the same construction about the year A.D. 900. Four of these dials have in modern times been found in Italy. One, discovered at Tivoli in 1746, is supposed to have belonged to Cicero, who, in one of his letters, says that he had sent a dial of this kind to his villa near Tusculum. The second and third were found in 1751—one at Castel-Nuovo and the other at Rignano; and a fourth was found in 1762 at Pompeii. G. H. Martini in his Abhandlungen von den Sonnenuhren der Alten (Leipzig, 1777), says that this dial was made for the latitude of Memphis; it may therefore be the work of Egyptians, perhaps constructed in the school of Alexandria.

Herodotus recorded that the Greeks derived from the Babylonians the use of the gnomon, but the great progress made by the Greeks in geometry enabled them in later times to construct dials of great complexity, some of which remain to us, and are proof not only of extensive knowledge but also of great ingenuity.

Ptolemy’s Almagest treats of the construction of dials by means of his analemma, an instrument which solved a variety of astronomical problems. The constructions given by him were sufficient for regular dials, that is, horizontal dials, or vertical dials facing east, west, north or south, and these are the only ones he treats of. It is certain, however, that the ancients were able to construct declining dials, as is shown by that most interesting monument of ancient gnomics—the Tower of the Winds at Athens. This is a regular octagon, on the faces of which the eight principal winds are represented, and over them eight different dials—four facing the cardinal points and the other four facing the intermediate directions. The date of the dials is long subsequent to that of the tower; for Vitruvius, who describes the tower in the sixth chapter of his first book, says nothing about the dials, and as he has described all the dials known in his time, we must believe that the dials of the tower did not then exist. The hours are still the temporary hours or, as the Greeks called them, hectemoria.

The first sun-dial erected at Rome was in the year 290 B.C., and this Papirius Cursor had taken from the Samnites. A dial which Valerius Messalla had brought from Catania, the latitude of which is five degrees less than that of Rome, was placed in the forum in the year 261 B.C. The first dial actually constructed at Rome was in the year 164 B.C., by order of Q. Marcius Philippus, but as no other Roman has written on gnomonics, this was perhaps the work of a foreign artist. If, too, we remember that the dial found at Pompeii was made for the latitude of Memphis, and consequently less adapted to its position than that of Catania to Rome, we may infer that mathematical knowledge was not cultivated in Italy.

The Arabians were much more successful. They attached great importance to gnomonics, the principles of which they had learned from the Greeks, but they greatly simplified and diversified the Greek constructions. One of their writers, Abu'l Hassan, who lived about the beginning of the 13th century, taught them how to trace dials on cylindrical, conical and other surfaces. He even introduced equal or equinoctial hours, but the idea was not supported, and the temporary hours alone continued in use.

Where or when the great and important step already conceived by Abu'l Hassan, and perhaps by others, of reckoning by equal hours was generally adopted cannot now be determined. The history of gnomonics from the 13th to the beginning of the 16th century is almost a blank, and during that time the change took place. We can see, however, that the change would necessarily follow the introduction of clocks and other mechanical methods of measuring time; for, however imperfect these were, the hours they marked would be of the same length in summer and in winter, and the discrepancy between these equal hours and the temporary hours of the sun-dial would soon be too important to be overlooked. Now, we know that a balance clock was put up in the palace of Charles V. of France about the year 1370, and we may reasonably suppose that the new sun-dials came into general use during the 14th and 15th centuries.

Among the earliest of the modern writers on gnomonics was Sebastian Münster (q.v.), who published his Horologiographia at Basel in 1531. He gives a number of correct rules, but without demonstrations. Among his inventions was a moon-dial,[1] but this does not admit of much accuracy.

During the 17th century dialling was discussed at great length by many writers on astronomy. Clavius devotes a quarto

  1. In one of the courts of Queens’ College, Cambridge, there is an elaborate sun-dial dating from the end of the 17th or beginning of the 18th century, and around it a series of numbers which make it available as a moon-dial when the moon’s age is known.