This page has been validated.
764
DYNAMITE—DYNAMO
  

DYNAMITE (Gr. δύναμις, power), the name given to several explosive preparations containing nitroglycerin (q.v.) which are almost exclusively used for blasting purposes. The first practical application of nitroglycerin in this way was made by A. Nobel in 1863. He soaked gunpowder with the liquid and fired the gunpowder by an ordinary fuse. Later he found that nitroglycerin could be detonated by the explosion of several materials such as fulminate of mercury, the use of which as a detonator he patented in 1867. In 1866–1867 he experimented with charcoal and other substances, and found the infusorial earth known as kieselguhr, which consists mainly of silica (nearly 95%), eminently adapted to the purpose, as it was inert, non-combustible, and after a little heating and preparation very porous, retaining a large amount of nitroglycerin as water is held in a sponge, without very serious exudation on standing. This kieselguhr dynamite is generally made by incorporating three parts of nitroglycerin with one part of the dry earth, the paste being then formed into cylindrical cartridges. This work is done by hand. Generally a small percentage of the kieselguhr is replaced by a mixture containing sodium and ammonium carbonates, talc and ochre. This product is known as dynamite No. 1. Disabilities attaching to kieselguhr dynamite are that when placed in water the nitroglycerin is liable to be exuded or displaced, also that, like nitroglycerin itself, it freezes fairly easily and thawing the frozen cartridges is a dangerous operation. Other substances, e.g. kaolin, tripoli, magnesia alba (magnesium carbonate), alumina, sugar, charcoal, some powdered salts and mixtures of sawdust and salts, have been shown to be absorbents more or less adapted to the purpose of making a dynamite. Charcoal from cork is said to absorb about 90% of its weight of nitroglycerin. With the idea of obtaining greater safety, mixtures have been made of nitroglycerin with wood fibre, charcoal and metallic nitrates. Lithofracteur, for instance, consists of 50% nitroglycerin and a mixture of prepared sawdust, kieselguhr and barium nitrate. Carbonite contains 25% of nitroglycerin, the remainder being a mixture of wood-meal and alkali nitrates, with about 1% of sulphur. Dualin, atlas dynamite and potentite are other modifications.

A convenient form in which nitroglycerin can be made up for blasting purposes, especially in wet ground, is the gelatinous material obtained by the action of nitroglycerin, either alone or with the help of solvents, on low-grade or soluble gun-cottons. It is known as blasting gelatin, and was first made by Nobel by incorporating 6 or 7% of low nitrated cellulose (collodion cotton or soluble gun-cotton) with slightly warmed nitroglycerin. The result is a transparent plastic material, of specific gravity 1·5 to 1·6, which may be kept under water for a long time without appreciable change. It is less sensitive to detonation than ordinary dynamite, and although its explosion is slightly slower it is more powerful than dynamite and much superior to the liquid nitroglycerin. Blasting gelatin also freezes and is sensitive to percussion in this state. Camphor and other substances have been added to blasting gelatin to render it more solid and less sensitive. Some modifications of blasting gelatin, e.g. gelignite, contain wood-meal and such oxygen-containing salts as potassium nitrate. Experience has conclusively shown that dynamites are more satisfactory, quicker, and more intense in action than liquid nitroglycerin.

To prevent nitroglycerin and some of the forms of dynamite from freezing it has been proposed to add to them small quantities of either monochlor-dinitroglycerin or of a nitrated poly-glycerin. The former is obtained by first acting upon glycerin with hydrogen chloride to produce u-chlorhydrin or chlor-propylene glycol, C3H7O2Cl, which is then nitrated as in the case of glycerin. The latter is obtained by heating glycerin for six or seven hours to about 300° C., whereby water is split off in such manner that a diglycerin C6H14O5, for the most part, results. This on nitration in the usual manner gives a product C6H10N4O13, which burns and explodes in a similar manner to ordinary nitroglycerin, but is less sensitive and does not so easily freeze. The mono- and di-nitrates of glycerin have also been proposed as additions to ordinary nitroglycerin (q.v.) for the same purpose.  (W. R. E. H.) 


DYNAMO (a shortened form of “dynamo-electric machine,” from Gr. δύναμις, power), a machine for converting mechanical into electrical energy.

The dynamo ranks with the telegraph and telephone as one of the three striking applications of electrical and magnetic science to which the material progress that marked the second half of the 19th century was in no small measure due. Since the discovery of the principle of the dynamo by Faraday in 1831 the simple model which he first constructed has been gradually developed into the machines of 5000 horse-power or more which are now built to meet the needs of large cities for electric lighting and power, while at the same time the numbers of dynamos in use have increased almost beyond estimate. Yet such was the insight of Faraday into the fundamental nature of the dynamo that the theory of its action which he laid down has remained essentially unchanged. His experiments on the current which was
Fig. 1.
set up in a coil of wire during its movement across the poles of a magnet led naturally to the explanation of induced electromotive force as caused by the linking or unlinking of magnetic lines of flux with an electric circuit. For the more definite case of the dynamo, however, we may, with Faraday, make the transition from line-linkage to the equivalent conception of “line-cutting” as the source of E.M.F.—in other words, to the idea of electric conductors “cutting” or intersecting[1] the lines of flux in virtue of relative motion of the magnetic field and electric circuit. On the 28th of October 1831 Faraday mounted a copper disk so that it could be rotated edgewise between the poles of a permanent horse-shoe magnet. When so rotated, it cut the lines of flux which passed transversely through its lower half, and by means of two rubbing contacts, one on its periphery and the other on its spindle, the circuit was closed through a galvanometer, which indicated the passage of a continuous current so long as the disk was rotated (fig. 1). Thus by the invention of the first dynamo Faraday proved his idea that the E.M.F. induced through the interaction of a magnetic field and an electric circuit was due to the passage of a portion of the electric circuit across the lines of flux, or vice versa, and so could be maintained if the cutting of the lines were made continuous.[2] In comparison with Faraday’s results, the subsequent advance is to be regarded as a progressive perfecting of the mechanical and electro-magnetic design, partly from the theoretical and partly from the practical side, rather than as modifying or adding to the idea which was originally present in his mind, and of which he already saw the possibilities.

A dynamo, then, is a machine in which, by means of continuous relative motion, an electrical conductor or system of conductors forming part of a circuit is caused to cut the lines of a magnetic field or fields; the cutting of the magnetic flux induces an electromotive force in the conductors, and when the circuit is closed a current flows, whereby mechanical energy is converted into electrical energy.

Little practical use could be made of electrical energy so long as its only known sources were frictional machines and voltaic batteries. The cost of the materials for producing electrical currents on a large scale by chemical action was prohibitive, while the frictional machine only yielded very small currents at extremely high potentials. In the dynamo, on the other hand, electrical energy in a convenient form could be cheaply and easily obtained by mechanical means, and with its invention the application of electricity to a wide range of commercial purposes became economically possible. As a converter of energy from one form to another it is only surpassed in efficiency by another electrical appliance, namely, the transformer (see Transformers). In this there is merely conversion of electrical energy at a high potential into electrical energy at a low potential, or vice versa, but in the dynamo the mechanical energy which must be applied to maintain the relative movement of magnetic field and conductor is absorbed, and reappears in an electrical form. A true transformation takes place, and the proportion which the rate of

  1. Experimental Researches in Electricity, series ii. § 6, pars. 256, 259-260, and series xxviii. § 34.
  2. Ibid. series i. § 4, pars. 84-90.