This page has been validated.
778
DYNAMO
  

mains dictates a higher voltage, especially in connexion with a three-wire system; the larger dynamos may then give 500 volts, and be connected directly across the two outer wires. A pair of smaller machines coupled together, and each capable of giving 250 volts, are often placed in series across the system, with their common junction connected to the middle wire; the one which at any time is on the side carrying the smaller current will act as a motor and drive the other as a dynamo, so as to balance the system. The directly-coupled steam dynamo may be said to have practically displaced the belt- or rope-driven sets which were formerly common in central stations. The generating units of the central station are arranged in progressive sizes, rising from, it may be, 250 or 500 horse-power up to 750 or 1000, or in large towns to as much as 5000 horse-power. If for lighting only, they are usually shunt-wound, the regulation of the voltage, to keep the pressure constant on the distributing system under the gradual changes of load, being effected by variable resistances in the shunt circuit of the field-magnets.

Generators used for supplying current to electric tramways are commonly wound for 500 volts at no load and are over-compounded, so that the voltage rises to 550 volts at the maximum load, and thus compensates for the loss of volts over the transmitting lines. For arc lighting it was formerly usual to employ a class of dynamo which, from the nature of its construction, was called an “open-coil” machine, and which gave a unidirectional but pulsating current. Of such machines the Brush and Thomson-Houston types were very widely used; their E.M.F. ranged from 2000 to 3000 volts for working a large number of arcs in series, and by means of special regulators their current was maintained constant over a wide range of voltage. But as their efficiency was low and they could not be applied to any other purpose, they have been largely superseded in central stations by closed-coil dynamos or alternators, which can also be used for incandescent lighting. In cases where the central station is situated at some distance from the district to which the electric energy is to be supplied, voltages from 1000 to 2000 are employed, and these are transformed down at certain distributing centres by continuous-current transformers (see Transformers and Electricity Supply). These latter machines are in reality motor-driven dynamos, and hence are also called motor-generators; the armatures of the motor and dynamo are often wound on the same core, with a commutator at either end, the one to receive the high-pressure motor current, and the other to collect the low-pressure current furnished by the dynamo.

In all large central stations it is necessary that the dynamos should be capable of being run in parallel, so that their outputs may be combined on the same “omnibus bars” and thence distributed to the network of feeders. With simple shunt-wound machines this is easily effected by coupling together terminals of like sign when the voltage of the two or more machines are closely equal. With compound-wound dynamos not only must the external terminals of like sign be coupled together, but the junctions of the brush leads with the series winding must be connected by an “equalizing” lead of low resistance; otherwise, should the E.M.F. of one machine for any reason fall below the voltage of the omnibus bars, there is a danger of its polarity being reversed by a back current from the others with which it is in parallel.

Owing to the necessary presence in the continuous-current dynamo of the commutator, with its attendant liability to sparking at the brushes, and further, owing to the difficulty of insulating the rotating armature wires, a pressure of 3000 volts has seldom been exceeded in any one continuous-current machine, and has been given above as the limiting voltage of the class. If therefore it is required to work with higher pressures in order to secure economy in the transmitting lines, two or more machines must be coupled in series by connecting together terminals which are of unlike sign.[1] The stress of the total voltage may still fall on the insulation of the winding from the body of the machine; hence for high-voltage transmission of power over very long distances, the continuous-current dynamo in certain points yields in convenience to the alternator. In this there is no commutator, the armature coils may be stationary and can be more thoroughly insulated, while further, if it be thought undesirable to design the machine for the full transmitting voltage, it is easy to wind the armature for a low pressure; this can be subsequently transformed up to a high pressure by means of the alternating-current transformer, which has stationary windings and so high an efficiency that but little loss arises from its use. With these remarks, the transition may be made to the fuller discussion of the alternator.

Alternators.

The frequency employed in alternating-current systems for distributing power and light varies between such wide limits as 25 and 133; yet in recent times the tendency has been towards standard frequencies of 25, 50 and 100 as a maximum. High frequencies involve more copper in the magnet coils, owing to the Frequency.greater number of poles, and a greater loss of power in their excitation, but the alternator as a whole is somewhat lighter, and the transformers are cheaper. On the other hand, high frequency may cause prejudicial effects, due to the inductance and capacity of the distributing lines; and in asynchronous motors used on polyphase systems the increased number of poles necessary to obtain reasonable speeds reduces their efficiency, and is otherwise disadvantageous, especially for small horse-powers. A frequency lower than 40 is, however, not permissible where arc lighting is to form any considerable portion of the work and is to be effected by the alternating current without rectification, since below this value the eye can detect the periodic alteration in the light as the carbons alternately cool and become heated. Thus for combined lighting and power 50 or 60 are the most usual frequencies; but if the system is designed solely or chiefly for the distribution of power, a still lower frequency is preferable. On this account 25 was selected by the engineers for the Niagara Falls power transmission, after careful consideration of the problem, and this frequency has since been widely adopted in similar cases.

The most usual type of heteropolar alternator has an internal rotating field-magnet system, and an external stationary armature, as in fig. 10. The coils of the armature, which must for high voltages be heavily insulated, are then not subjected to the additional stresses due to centrifugal force; and further, the collecting Alternator construction.rings which must be attached to the rotating portion need only transmit the exciting current at a low voltage.

Fig. 36.

The homopolar machine possesses the advantages that only a single exciting coil is required, whatever the number of polar projections, and that both the armature and field-magnet coils may be stationary. From fig. 8 it will be seen that it is not essential that the exciting coil should revolve with the internal magnet, but it may be supported from the external stationary armature while still embracing the central part of the rotor. The E.M.F. is set up in the armature coils through the periodic variation of the flux through them as the iron projections sweep past, and these latter may be likened to a number of “keepers,” which complete the magnetic circuit. From the action of the rotating iron masses they may also be considered as the inducing elements or “inductors,” and the homopolar machine is thence also known as the “inductor alternator.” If the end of the rotor marked S in fig. 8 is split up into a number of S polar projections similar to the N poles, a second set of armature coils may be arranged opposite to them, and we obtain an inductor

  1. Between Moutiers and Lyons, a distance of 115 m., energy is transmitted on the Thury direct-current system at a maximum pressure of 60,000 volts. Four groups of machines in series are employed, each group consisting of four machines in series; the rated output of each component machine is 75 amperes at 3900 volts or 400 h.p. A water turbine drives two pairs of such machines through an insulating coupling, and the sub-base of each pair of machines is separately insulated from earth, the foundation being also of special insulating materials.