This page has been proofread, but needs to be validated.
ELASTICITY
149


permanent set is produced by torsion. In the case of a section of any form, the strain and stress are greatest at points on the contour, and these points are in many cases the points of the contour which are nearest to the centroid of the section. The theory has also been applied to show that a longitudinal flaw near the axis of a shaft transmitting a torsional couple has little influence on the strength of the shaft, but that in the neighbourhood of a similar flaw which is much nearer to the surface than to the axis the shearing strain may be nearly doubled, and thus the possibility of such flaws is a source of weakness against which special provision ought to be made.

Fig. 8.—Diagrams showing Torsional Rigidities.
Fig. 9.

46. Bending of Beams.—As a second example of the application of the general theory we take the problem of the flexure of a beam. In this case also we begin by forming a simple intuition as to the nature of the strain and the stress. On the side of the beam towards the centre of curvature the longitudinal filaments must be contracted, and on the other side they must be extended. If we assume that the cross-sections remain plane, and that the central-line is unaltered in length, we see (at once from fig. 9) that the extensions (or contractions) are given by the formula y/R, where y denotes the distance of a longitudinal filament from the plane drawn through the unstrained central-line at right-angles to the plane of bending, and R is the radius of curvature of the curve into which this line is bent (shown by the dotted line in the figure). Corresponding to this strain there must be traction acting across the cross-sections. If we assume that there is no other stress, then the magnitude of the traction in question is Ey/R, where E is Young’s modulus, and it is tension on the side where the filaments are extended and pressure on the side where they are contracted. If the plane of bending contains a set of principal axes of the cross-sections at their centroids, these tractions for the whole cross-section are equivalent to a couple of moment EI/R, where I now denotes the moment of inertia of the cross-section about an axis through its centroid at right angles to the plane of bending, and the plane of the couple is the plane of bending. Thus a beam of any form of section can be held bent in a “principal plane” by terminal couples of moment M, that is to say by a “bending moment” M; the central-line will take a curvature M/EI, so that it becomes an arc of a circle of radius EI/M; and the stress at any point will be tension of amount My/I, where y denotes distance (reckoned positive towards the side remote from the centre of curvature) from that plane which initially contains the central-line and is at right angles to the plane of the couple. This plane is called the “neutral plane.” The restriction that the beam is bent in a principal plane means that the plane of bending contains one set of principal axes of the cross-sections at their centroids; in the case of a beam of rectangular section the plane would bisect two opposite edges at right angles. In order that the theory may hold good the radius of curvature must be very large.

Fig. 10.
Fig. 11.

47. In this problem of the bending of a beam by terminal couples the stress is tension, determined as above, and the corresponding strain consists therefore of longitudinal extension of amount My/EI or y/R (contraction if y is negative), accompanied by lateral contraction of amount σMy/EI or σy/R (extension if y is negative), σ being Poisson’s ratio for the material. Our intuition of the nature of the strain was imperfect, inasmuch as it took no account of these lateral strains. The necessity for introducing them was pointed out by Saint-Venant. The effect of them is a change of shape of the cross-sections in their own planes. This is shown in an exaggerated way in fig. 10, where the rectangle ABCD represents the cross-section of the unstrained beam, or a rectangular portion of this cross-section, and the curvilinear figure A′B′C′D′ represents in an exaggerated fashion the cross-section (or the corresponding portion of the cross-section) of the same beam, when bent so that the centre of curvature of the central-line (which is at right angles to the plane of the figure) is on the line EF produced beyond F. The lines A′B′ and C′D′ are approximately circles of radii R/σ, when the central-line is a circle of radius R, and their centres are on the line FE produced beyond E. Thus the neutral plane, and each of the faces that is parallel to it, becomes strained into an anticlastic surface, whose principal curvatures are in the ratio σ : 1. The general appearance of the bent beam is shown in an exaggerated fashion in fig. 11, where the traces of the surface into which the neutral plane is bent are dotted. The result that the ratio of the principal curvatures of the anticlastic surfaces, into which the top and bottom planes of the beam (of rectangular section) are bent, is Poisson’s ratio σ, has been used for the experimental determination of σ. The result that the radius of curvature of the bent central-line is EI/M is used in the experimental determination of E. The quantity EI is often called the “flexural rigidity” of the beam. There are two principal flexural rigidities corresponding to bending in the two principal planes (cf. § 62 below).

Fig. 12.

48. That this theory requires modification, when the load does not consist simply of terminal couples, can be seen most easily by considering the problem of a beam loaded at one end with a weight W, and supported in a horizontal position at its other end. The forces that are exerted at any section p, to balance the weight W, must reduce statically to a vertical force W and a couple, and these forces arise from the action of the part Ap on the part Bp (see fig. 12), i.e. from the stresses across the section at p. The couple is equal to the moment of the applied load W about an axis drawn through the centroid of the section p at right angles to the plane of bending. This moment is called the “bending moment” at the section, it is the product of the load W and the distance of the section from the loaded end, so that it varies uniformly along the length of the beam. The stress that suffices in the simpler problem gives rise to no vertical force, and it is clear that in addition to longitudinal tensions and pressures there must be tangential tractions on the cross-sections. The resultant of these tangential tractions must be a force equal to W, and directed vertically;