This page has been validated.
ELECTRICAL MACHINE
177


infinitely small each time, then the multiplier r would be 2, and the charge would be doubled each time. Hence the name of the apparatus.


Fig. 3.—Nicholsons Revolving Doubler.
Erasmus Darwin, B. Wilson, G. C. Bohnenberger and J. C. E. Peclet devised various modifications of Bennet’s instrument (see S. P. Thompson, “The Influence Machine from 1788 to 1888,” Journ. Soc. Tel. Eng., 1888, 17, p. 569). Bennet’s doubler appears to have given a suggestion Nicholson’s doubler.to William Nicholson (Phil. Trans., 1788, p. 403) of “an instrument which by turning a winch produced the two states of electricity without friction or communication with the earth.” This “revolving doubler,” according to the description of Professor S. P. Thompson (loc. cit.), consists of two fixed plates of brass A and C (fig. 3), each two inches in diameter and separately supported on insulating arms in the same plane, so that a third revolving plate B may pass very near them without touching. A brass ball D two inches in diameter is fixed on the end of the axis that carries the plate B, and is loaded within at one side, so as to act as a counterpoise to the revolving plate B. The axis P N is made of varnished glass, and so are the axes that join the three plates with the brass axis N O. The axis N O passes through the brass piece M, which stands on an insulating pillar of glass, and supports the plates A and C. At one extremity of this axis is the ball D, and the other is connected with a rod of glass, N P, upon which is fixed the handle L, and also the piece G H, which is separately insulated. The pins E, F rise out of the back of the fixed plates A and C, at unequal distances from the axis. The piece K is parallel to G H, and both of them are furnished at their ends with small pieces of flexible wire that they may touch the pins E, F in certain points of their revolution. From the brass piece M there stands out a pin I, to touch against a small flexible wire or spring which projects sideways from the rotating plate B when it comes opposite A. The wires are so adjusted by bending that B, at the moment when it is opposite A, communicates with the ball D, and A communicates with C through GH; and half a revolution later C, when B comes opposite to it, communicates with the ball D through the contact of K with F. In all other positions A, B, C and D are completely disconnected from each other. Nicholson thus described the operation of his machine:—

“When the plates A and B are opposite each other, the two fixed plates A and C may be considered as one mass, and the revolving plate B, together with the ball D, will constitute another mass. All the experiments yet made concur to prove that these two masses will not possess the same electric state. . . .The redundant electricities in the masses under consideration will be unequally distributed; the plate A will have about ninety-nine parts, and the plate C one; and, for the same reason, the revolving plate B will have ninety-nine parts of the opposite electricity, and the ball D one. The rotation, by destroying the contacts, preserves this unequal distribution, and carries B from A to C at the same time that the tail K connects the ball with the plate C. In this situation, the electricity in B acts upon that in C, and produces the contrary state, by virtue of the communication between C and the ball; which last must therefore acquire an electricity of the same kind with that of the revolving plate. But the rotation again destroys the contact and restores B to its first situation opposite A. Here, if we attend to the effect of the whole revolution, we shall find that the electric states of the respective masses have been greatly increased; for the ninety-nine parts in A and B remain, and the one part of electricity in C has been increased so as nearly to compensate ninety-nine parts of the opposite electricity in the revolving plate B, while the communication produced an opposite mutation in the electricity of the ball. A second rotation will, of course, produce a proportional augmentation of these increased quantities; and a continuance of turning will soon bring the intensities to their maximum, which is limited by an explosion between the plates” (Phil. Trans., 1788, p. 405).


Fig. 4.—Belli's Doubler.
Nicholson described also another apparatus, the “spinning condenser,” which worked on the same principle. Bennet and Nicholson were followed by T. Cavallo, John Read, Bohnenberger, C. B. Désormes and J. N. P. Hachette and others in the invention of various forms of rotating Belli’s doubler.doubler. A simple and typical form of doubler, devised in 1831 by G. Belli (fig. 4), consisted of two curved metal plates between which revolved a pair of balls carried on an insulating stem. Following the nomenclature usual in connexion with dynamos we may speak of the conductors which carry the initial charges as the field plates, and of the moving conductors on which are induced the charges which are subsequently added to those on the field plates, as the carriers. The wire which connects two armature plates for a moment is the neutralizing conductor. The two curved metal plates constitute the field plates and must have original charges imparted to them of opposite sign. The rotating balls are the carriers, and are connected together for a moment by a wire when in a position to be acted upon inductively by the field plates, thus acquiring charges of opposite sign. The moment after they are separated again. The rotation continuing the ball thus negatively charged is made to give up this charge to that negatively electrified field plate, and the ball positively charged its charge to the positively electrified field plate, by touching little contact springs. In this manner the field plates accumulate charges of opposite sign.


Fig. 5.—Varley's Machine.
Modern types of influence machine may be said to date from 1860 when C. F. Varley patented a type of influence machine which has been the parent of numerous subsequent forms (Brit. Pat. Spec. No. 206 of 1860). In it the field plates were sheets of tin-foil attached to a glass Varley’s machine.plate (fig. 5). In front of them a disk of ebonite or glass, having carriers of metal fixed to its edge, was rotated by a winch. In the course of their rotation two diametrically opposite carriers touched against the ends of a neutralizing conductor so as to form for a moment one conductor, and the moment afterwards these two carriers were insulated, one carrying away a positive charge and the other a negative. Continuing their rotation, the positively charged carrier gave up its positive charge by touching a little knob attached to the positive field plate, and similarly for the negative charge carrier. In this way the charges on the field plates were continually replenished and reinforced. Varley also constructed a multiple form of influence machine having six rotating disks, each having a number of carriers and rotating between field plates. With this apparatus he obtained sparks 6 in. long, the initial source of electrification being a single Daniell cell.

Varley was followed by A. J. I. Toepler, who in 1865 constructed an influence machine consisting of two disks fixed on the same shaft and rotating in the same direction. Each disk carried two strips of tin-foil extending nearly over a semi-circle, and there were two field Toepler machine.plates, one behind each disk; one of the plates was positively and the other negatively electrified. The carriers which were touched under the influence of the positive field plate passed on and gave up a portion of their negative charge to increase that of the negative field plate; in the same