This page has been validated.
218
ELECTROLYSIS

of all these experiments may be summed up in the statement that the amount of chemical action is proportional to the quantity of electricity which passes through the cell.

Faraday’s next step was to pass the same current through different electrolytes in series. He found that the amounts of the substances liberated in each cell were proportional to the chemical equivalent weights of those substances. Thus, if the current be passed through dilute sulphuric acid between hydrogen electrodes, and through a solution of copper sulphate, it will be found that the mass of hydrogen evolved in the first cell is to the mass of copper deposited in the second as 1 is to 31.8. Now this ratio is the same as that which gives the relative chemical equivalents of hydrogen and copper, for 1 gramme of hydrogen and 31.8 grammes of copper unite chemically with the same weight of any acid radicle such as chlorine or the sulphuric group, SO4. Faraday examined also the electrolysis of certain fused salts such as lead chloride and silver chloride. Similar relations were found to hold and the amounts of chemical change to be the same for the same electric transfer as in the case of solutions.

We may sum up the chief results of Faraday’s work in the statements known as Faraday’s laws: The mass of substance liberated from an electrolyte by the passage of a current is proportional (1) to the total quantity of electricity which passes through the electrolyte, and (2) to the chemical equivalent weight of the substance liberated.

Since Faraday’s time his laws have been confirmed by modern research, and in favourable cases have been shown to hold good with an accuracy of at least one part in a thousand. The principal object of this more recent research has been the determination of the quantitative amount of chemical change associated with the passage for a given time of a current of strength known in electromagnetic units. It is found that the most accurate and convenient apparatus to use is a platinum bowl filled with a solution of silver nitrate containing about fifteen parts of the salt to one hundred of water. Into the solution dips a silver plate wrapped in filter paper, and the current is passed from the silver plate as anode to the bowl as cathode. The bowl is weighed before and after the passage of the current, and the increase gives the mass of silver deposited. The mean result of the best determinations shows that when a current of one ampere is passed for one second, a mass of silver is deposited equal to 0.001118 gramme. So accurate and convenient is this determination that it is now used conversely as a practical definition of the ampere, which (defined theoretically in terms of magnetic force) is defined practically as the current which in one second deposits 1.118 milligramme of silver.

Taking the chemical equivalent weight of silver, as determined by chemical experiments, to be 107.92, the result described gives as the electrochemical equivalent of an ion of unit chemical equivalent the value 1.036 × 10−5. If, as is now usual, we take the equivalent weight of oxygen as our standard and call it 16, the equivalent weight of hydrogen is 1.008, and its electrochemical equivalent is 1.044 × 105. The electrochemical equivalent of any other substance, whether element or compound, may be found by multiplying its chemical equivalent by 1.036 × 10−5. If, instead of the ampere, we take the C.G.S. electromagnetic unit of current, this number becomes 1.036 × 10−4.

Chemical Nature of the Ions.—A study of the products of decomposition does not necessarily lead directly to a knowledge of the ions actually employed in carrying the current through the electrolyte. Since the electric forces are active throughout the whole solution, all the ions must come under its influence and therefore move, but their separation from the electrodes is determined by the electromotive force needed to liberate them. Thus, as long as every ion of the solution is present in the layer of liquid next the electrode, the one which responds to the least electromotive force will alone be set free. When the amount of this ion in the surface layer becomes too small to carry all the current across the junction, other ions must also be used, and either they or their secondary products will appear also at the electrode. In aqueous solutions, for instance, a few hydrogen (H) and hydroxyl (OH) ions derived from the water are always present, and will be liberated if the other ions require a higher decomposition voltage and the current be kept so small that hydrogen and hydroxyl ions can be formed fast enough to carry all the current across the junction between solution and electrode.

The issue is also obscured in another way. When the ions are set free at the electrodes, they may unite with the substance of the electrode or with some constituent of the solution to form secondary products. Thus the hydroxyl mentioned above decomposes into water and oxygen, and the chlorine produced by the electrolysis of a chloride may attack the metal of the anode. This leads us to examine more closely the part played by water in the electrolysis of aqueous solutions. Distilled water is a very bad conductor, though, even when great care is taken to remove all dissolved bodies, there is evidence to show that some part of the trace of conductivity remaining is due to the water itself. By careful redistillation F. Kohlrausch has prepared water of which the conductivity compared with that of mercury was only 0.40 × 10−11 at 18° C. Even here some little impurity was present, and the conductivity of chemically pure water was estimated by thermodynamic reasoning as 0.36 × 10−11 at 18° C. As we shall see later, the conductivity of very dilute salt solutions is proportional to the concentration, so that it is probable that, in most cases, practically all the current is carried by the salt. At the electrodes, however, the small quantity of hydrogen and hydroxyl ions from the water are liberated first in cases where the ions of the salt have a higher decomposition voltage. The water being present in excess, the hydrogen and hydroxyl are re-formed at once and therefore are set free continuously. If the current be so strong that new hydrogen and hydroxyl ions cannot be formed in time, other substances are liberated; in a solution of sulphuric acid a strong current will evolve sulphur dioxide, the more readily as the concentration of the solution is increased. Similar phenomena are seen in the case of a solution of hydrochloric acid. When the solution is weak, hydrogen and oxygen are evolved; but, as the concentration is increased, and the current raised, more and more chlorine is liberated.

An interesting example of secondary action is shown by the common technical process of electroplating with silver from a bath of potassium silver cyanide. Here the ions are potassium and the group Ag(CN)2.[1] Each potassium ion as it reaches the cathode precipitates silver by reacting with the solution in accordance with the chemical equation

K + KAg(CN)2 = 2KCN + Ag,

while the anion Ag(CN)2 dissolves an atom of silver from the anode, and re-forms the complex cyanide KAg(CN)2 by combining with the 2KCN produced in the reaction described in the equation. If the anode consist of platinum, cyanogen gas is evolved thereat from the anion Ag(CN)2, and the platinum becomes covered with the insoluble silver cyanide, AgCN, which soon stops the current. The coating of silver obtained by this process is coherent and homogeneous, while that deposited from a solution of silver nitrate, as the result of the primary action of the current, is crystalline and easily detached.

In the electrolysis of a concentrated solution of sodium acetate, hydrogen is evolved at the cathode and a mixture of ethane and carbon dioxide at the anode. According to H. Jahn,[2] the processes at the anode can be represented by the equations

2CH2⋅COO + H2O = 2CH3⋅COOH + O
2CH3⋅COOH + O = C2H6 + 2CO2 + H2O.

The hydrogen at the cathode is developed by the secondary action

2Na + 2H2O = 2NaOH + H2.

Many organic compounds can be prepared by taking advantage of secondary actions at the electrodes, such as reduction by the cathodic hydrogen, or oxidation at the anode (see Electrochemistry).

It is possible to distinguish between double salts and salts of compound acids. Thus J. W. Hittorf showed that when a current was passed through a solution of sodium platino-chloride, the platinum appeared at the anode. The salt must therefore be derived from an acid, chloroplatinic acid, H2PtCl6, and have the formula Na2PtCl6, the ions being Na and PtCl6″, for if it were a double salt it would decompose as a mixture of sodium chloride and platinum chloride and both metals would go to the cathode.


  1. See Hittorf, Pogg. Ann. cvi. 517 (1859).
  2. Grundriss der Elektrochemie (1895), p. 292; see also F. Kaufler and C. Herzog, Ber., 1909, 42, p. 3858.