This page has been validated.
ELECTROLYSIS
225

The effective electromotive force of the common lead accumulator (q.v.) is less than that required to charge it. This drop in the electromotive force has led to the belief that the cell is not reversible. F. Dolezalek, however, has attributed the difference to mechanical hindrances, which prevent the equalization of acid concentration in the neighbourhood of the electrodes, rather than to any essentially irreversible chemical action. The fact that the Gibbs-Helmholtz equation is found to apply also indicates that the lead accumulator is approximately reversible in the thermodynamic sense of the term.

Polarization and Contact Difference of Potential.—If we connect together in series a single Daniell’s cell, a galvanometer, and two platinum electrodes dipping into acidulated water, no visible chemical decomposition ensues. At first a considerable current is indicated by the galvanometer; the deflexion soon diminishes, however, and finally becomes very small. If, instead of using a single Daniell’s cell, we employ some source of electromotive force which can be varied as we please, and gradually raise its intensity, we shall find that, when it exceeds a certain value, about 1.7 volt, a permanent current of considerable strength flows through the solution, and, after the initial period, shows no signs of decrease. This current is accompanied by chemical decomposition. Now let us disconnect the platinum plates from the battery and join them directly with the galvanometer. A current will flow for a while in the reverse direction; the system of plates and acidulated water through which a current has been passed, acts as an accumulator, and will itself yield a current in return. These phenomena are explained by the existence of a reverse electromotive force at the surface of the platinum plates. Only when the applied electromotive force exceeds this reverse force of polarization, will a permanent steady current pass through the liquid, and visible chemical decomposition proceed. It seems that this reverse electromotive force of polarization is due to the deposit on the electrodes of minute quantities of the products of chemical decomposition. Differences between the two electrodes are thus set up, and, as we have seen above, an electromotive force will therefore exist between them. To pass a steady current in the direction opposite to this electromotive force of polarization, the applied electromotive force must exceed that of polarization and the excess is the effective electromotive force of the circuit, the current being, in accordance with Ohm's law, proportional to the applied electromotive force and represented by where is a constant called the resistance of the circuit.

When we use platinum electrodes in acidulated water, hydrogen and oxygen are evolved. The opposing force of polarization is about 1.7 volt, but, when the plates are disconnected and used as a source of current, the electromotive force they give is only about 1.07 volt. This irreversibility is due to the work required to evolve bubbles of gas at the surface of bright platinum plates. If the plates be covered with a deposit of platinum black, in which the gases are absorbed as fast as they are produced, the minimum decomposition point is 1.07 volt, and the process is reversible. If secondary effects are eliminated, the deposition of metals also is a reversible process; the decomposition voltage is equal to the electromotive force which the metal itself gives when going into solution. The phenomena of polarization are thus seen to be due to the changes of surface produced, and are correlated with the differences of potential which exist at any surface of separation between a metal and an electrolyte.

Many experiments have been made with a view of separating the two potential-differences which must exist in any cell made of two metals and a liquid, and of determining each one individually. If we regard the thermal effect at each junction as a measure of the potential-difference there, as the total thermal effect in the cell undoubtedly is of the sum of its potential-differences, in cases where the temperature coefficient is negligible, the heat evolved on solution of a metal should give the electrical potential-difference at its surface. Hence, if we assume that, in the Daniell’s cell, the temperature coefficients are negligible at the individual contacts as well as in the cell as a whole, the sign of the potential-difference ought to be the same at the surface of the zinc as it is at the surface of the copper. Since zinc goes into solution and copper comes out, the electromotive force of the cell will be the difference between the two effects. On the other hand, it is commonly thought that the single potential-differences at the surface of metals and electrolytes have been determined by methods based on the use of the capillary electrometer and on others depending on what is called a dropping electrode, that is, mercury dropping rapidly into an electrolyte and forming a cell with the mercury at rest in the bottom of the vessel. By both these methods the single potential-differences found at the surfaces of the zinc and copper have opposite signs, and the effective electromotive force of a Daniell’s cell is the sum of the two effects. Which of these conflicting views represents the truth still remains uncertain.

Diffusion of Electrolytes and Contact Difference of Potential between Liquids.—An application of the theory of ionic velocity due to W. Nernst[1] and M. Planck[2] enables us to calculate the diffusion constant of dissolved electrolytes. According to the molecular theory, diffusion is due to the motion of the molecules of the dissolved substance through the liquid. When the dissolved molecules are uniformly distributed, the osmotic pressure will be the same everywhere throughout the solution, but, if the concentration vary from point to point, the pressure will vary also. There must, then, be a relation between the rate of change of the concentration and the osmotic pressure gradient, and thus we may consider the osmotic pressure gradient as a force driving the solute through a viscous medium. In the case of non-electrolytes and of all non-ionized molecules this analogy completely represents the facts, and the phenomena of diffusion can be deduced from it alone. But the ions of an electrolytic solution can move independently through the liquid, even when no current flows, as the consequences of Ohm’s law indicate. The ions will therefore diffuse independently, and the faster ion will travel quicker into pure water in contact with a solution. The ions carry their charges with them, and, as a matter of fact, it is found that water in contact with a solution takes with respect to it a positive or negative potential, according as the positive or negative ion travels the faster. This process will go on until the simultaneous separation of electric charges produces an electrostatic force strong enough to prevent further separation of ions. We can therefore calculate the rate at which the salt as a whole will diffuse by examining the conditions for a steady transfer, in which the ions diffuse at an equal rate, the faster one being restrained and the slower one urged forward by the electric forces. In this manner the diffusion constant can be calculated in absolute units (HCl = 2.49, HNO3 = 2.27, NaCl = 1.12), the unit of time being the day. By experiments on diffusion this constant has been found by Scheffer, and the numbers observed agree with those calculated (HCl = 2.30, HNO3 = 2.22, NaCl = 1.11).

As we have seen above, when a solution is placed in contact with water the water will take a positive or negative potential with regard to the solution, according as the cation or anion has the greater specific velocity, and therefore the greater initial rate of diffusion. The difference of potential between two solutions of a substance at different concentrations can be calculated from the equations used to give the diffusion constants. The results give equations of the same logarithmic form as those obtained in a somewhat different manner in the theory of concentration cells described above, and have been verified by experiment.

The contact differences of potential at the interfaces of metals and electrolytes have been co-ordinated by Nernst with those at the surfaces of separation between different liquids. In contact with a solvent a metal is supposed to possess a definite solution pressure, analogous to the vapour pressure of a liquid. Metal goes into solution in the form of electrified ions. The liquid thus acquires a positive charge, and the metal a negative charge. The electric forces set up tend to prevent further separation, and finally a state of equilibrium is reached, when no

  1. Zeits. physikal. Chem. 2, p. 613.
  2. Wied. Ann., 1890, 40, p. 561.