This page has been proofread, but needs to be validated.
236
ELECTROMETER


from the needle and from the case, and the two pairs are connected to two electrodes. When the instrument is to be used to determine the potential difference between two conductors, they are connected to the two opposite pairs of quadrants. The needle in its normal position is symmetrically placed with regard to the quadrants, and carries a mirror by means of which its displacement can be observed in the usual manner by reflecting the ray of light from it. If the two quadrants are at different potentials, the needle moves from one quadrant towards the other, and the image of a spot of light on the scale is therefore displaced. Lord Kelvin provided the instrument with two necessary adjuncts, viz. a replenisher or rotating electrophorus (q.v.), by means of which the charge of the Leyden jar which forms the enclosing vessel can be increased or diminished, and also a small aluminium balance plate or gauge, which is in principle the same as the attracted disk portable electrometer by means of which the potential of the inner coating of the Leyden jar is preserved at a known value.

According to the mathematical theory of the instrument,[1]</a> if V and V′ are the potentials of the quadrants and v is the potential of the needle, then the torque acting upon the needle to cause rotation is given by the expression,

C (V − V′) {v1/2 (V + V′)},

where C is some constant. If v is very large compared with the mean value of the potentials of the two quadrants, as it usually is, then the above expression indicates that the couple varies as the difference of the potentials between the quadrants.

Dr J. Hopkinson found, however, before 1885, that the above formula does not agree with observed facts (Proc. Phys. Soc. Lond., 1885, 7, p. 7). The formula indicates that the sensibility of the instrument should increase with the charge of the Leyden jar or needle, whereas Hopkinson found that as the potential of the needle was increased by working the replenisher of the jar, the deflection due to three volts difference between the quadrants first increased and then diminished. He found that when the potential of the needle exceeded a certain value, of about 200 volts, for the particular instrument he was using (made by White of Glasgow), the above formula did not hold good. W. E. Ayrton, J. Perry and W. E. Sumpner, who in 1886 had noticed the same fact as Hopkinson, investigated the matter in 1891 (Proc. Roy. Soc., 1891, 50, p. 52; Phil. Trans., 1891, 182, p. 519). Hopkinson had been inclined to attribute the anomaly to an increase in the tension of the bifilar threads, owing to a downward pull on the needle, but they showed that this theory would not account for the discrepancy. They found from observations that the particular quadrant electrometer they used might be made to follow one or other of three distinct laws. If the quadrants were near together there were certain limits between which the potential of the needle might vary without producing more than a small change in the deflection corresponding with the fixed potential difference of the quadrants. For example, when the quadrants were about 2.5 mm. apart and the suspended fibres near together at the top, the deflection produced by a P.D. of 1.45 volts between the quadrants only varied about 11% when the potential of the needle varied from 896 to 3586 volts. When the fibres were far apart at the top a similar flatness was obtained in the curve with the quadrants about 1 mm. apart. In this case the deflection of the needle was practically quite constant when its potential varied from 2152 to 3227 volts. When the quadrants were about 3.9 mm. apart, the deflection for a given P.D. between the quadrants was almost directly proportional to the potential of the needle. In other words, the electrometer nearly obeyed the theoretical law. Lastly, when the quadrants were 4 mm. or more apart, the deflection increased much more rapidly than the potential, so that a maximum sensibility bordering on instability was obtained. Finally, these observers traced the variation to the fact that the wire supporting the aluminium needle as well as the wire which connects the needle with the sulphuric acid in the Leyden jar in the White pattern of Leyden jar is enclosed in a metallic guard tube to screen the wire from external action. In order that the needle may project outside the guard tube, openings are made in its two sides; hence the moment the needle is deflected each half of it becomes unsymmetrically placed relatively to the two metallic pieces which join the upper and lower half of the guard tube. Guided by these experiments, Ayrton, Perry and Sumpner constructed an improved unifilar quadrant electrometer which was not only more sensitive than the White pattern, but fulfilled the theoretical law of working. The bifilar suspension was abandoned, and instead a new form of adjustable magnetic control was adopted. All the working parts of the instrument were supported on the base, so that on removing a glass shade which serves as a Leyden jar they can be got at and adjusted in position. The conclusion to which the above observers came was that any quadrant electrometer made in any manner does not necessarily obey a law of deflection making the deflections proportional to the potential difference of the quadrants, but that an electrometer can be constructed which does fulfil the above law.

The importance of this investigation resides in the fact that an electrometer of the above pattern can be used as a wattmeter (q.v.), provided that the deflection of the needle is proportional to the potential difference of the quadrants. This use of the instrument was proposed simultaneously in 1881 by Professors Ayrton and G. F. Fitzgerald and M. A. Potier. Suppose we have an inductive and a non-inductive circuit in series, which is traversed by a periodic current, and that we desire to know the power being absorbed to the inductive circuit. Let v1, v2, v3 be the instantaneous potentials of the two ends and middle of the circuit; let a quadrant electrometer be connected first with the quadrants to the two ends of the inductive circuit and the needle to the far end of the non-inductive circuit, and then secondly with the needle connected to one of the quadrants (see fig. 5). Assuming the electrometer to obey the above-mentioned theoretical law, the first reading is proportional to

v1v2 { v3 v1 + v2 }
2

and the second to

v1v2 { v2 v1 + v2 }.
2

The difference of the readings is then proportional to

(v1v2) (v2v3).

But this last expression is proportional to the instantaneous power taken up in the inductive circuit, and hence the difference of the two readings of the electrometer is proportional to the mean power taken up in the circuit (Phil. Mag., 1891, 32, p. 206). Ayrton and Perry and also P. R. Blondlot and P. Curie afterwards suggested that a single electrometer could be constructed with two pairs of quadrants and a duplicate needle on one stem, so as to make two readings simultaneously and produce a deflection proportional at once to the power being taken up in the inductive circuit.

Fig. 7.—Quadrant Electrometer. Dolezalek Pattern.

Quadrant electrometers have also been designed especially for measuring extremely small potential differences. An instrument of this kind has been constructed by Dr. F. Dolezalek (fig. 7). The needle and quadrants are of small size, and the electrostatic capacity is correspondingly small. The quadrants are mounted on pillars of amber which afford a very high insulation. The needle, a piece of paddle-shaped paper thinly coated with silver foil, is suspended by a quartz fibre, its extreme lightness making it possible to use a very feeble controlling force without rendering the period of oscillation unduly great. The resistance offered by the air to a needle of such light construction suffices to render the motion nearly dead-beat. Throughout a wide range the deflections are proportional to the potential difference producing them. The needle is charged to a potential

  1. See Maxwell, Electricity and Magnetism (2nd ed., Oxford, 1881), vol. i. p. 311.