This page has been validated.
HISTORY]
EVOLUTION
  29

as conditioned in time by lower forms. In this respect it resembles Leibnitz’s idea of the world as a development; the idea of evolution is in each case a metaphysical as distinguished from a scientific one. Hegel gives a place in his metaphysical system to the mechanical and the teleological views; yet in his treatment of the world as an evolution the idea of end or purpose is the predominant one.

Of the followers of Hegel who have worked out his peculiar idea of evolution it is hardly necessary to speak. A bare reference may be made to J. K. F. Rosenkranz, who in his work Hegel’s Naturphilosophie seeks to develop Hegel’s idea of an earth-organism in the light of modern science, recognizing in crystallization the morphological element.

Schopenhauer.—Of the other German philosophers immediately following Kant, there is only one who calls for notice here, namely, Arthur Schopenhauer. This writer, by his conception of the world as will which objectifies itself in a series of gradations from the lowest manifestations of matter up to conscious man, gives a slightly new shape to the evolutional view of Schelling, though he deprives this view of its optimistic character by denying any co-operation of intelligence in the world-process. In truth, Schopenhauer’s conception of the world as the activity of a blind force is at bottom a materialistic and mechanical rather than a spiritualistic and teleological theory. Moreover, Schopenhauer’s subjective idealism, and his view of time as something illusory, hindered him from viewing this process as a sequence of events in time. Thus he ascribes eternity of existence to species under the form of the “Platonic ideas.” As Ludwig Noiré observes, Schopenhauer has no feeling for the problem of the origin of organic beings. He says Lamarck’s original animal is something metaphysical, not physical, namely, the will to live. “Every species (according to Schopenhauer) has of its own will, and according to the circumstances under which it would live, determined its form and organization,—yet not as something physical in time, but as something metaphysical out of time.”

Von Baer.—Before leaving the German speculation of the first half of the century, a word must be said of von Baer, to whose biological contributions we shall refer later in this article, who recognized in the law of development the law of the universe as a whole. In his Entwickelungsgeschichte der Thiere (p. 264) he distinctly tells us that the law of growing individuality is “the fundamental thought which goes through all forms and degrees of animal development and all single relations. It is the same thought which collected in the cosmic space the divided masses into spheres, and combined these to solar systems; the same which caused the weather-beaten dust on the surface of our metallic planet to spring forth into living forms.” Von Baer thus prepared the way for Herbert Spencer’s generalization of the law of organic evolution as the law of all evolution.

Comte.—As we arrive at the 19th century, though yet before the days of Darwin, biology is already beginning to affect the general aspect of thought. It might suffice to single out the influence of Auguste Comte, as the last great thinker who wrote before Darwinism began to permeate philosophic speculation. Though Comte did not actually contribute to a theory of cosmic organic evolution, he helped to lay the foundations of a scientific conception of human history as a natural process of development determined by general laws of human nature together with the accumulating influences of the past. Comte does not recognize that this process is aided by any increase of innate capacity; on the contrary, progress is to him the unfolding of fundamental faculties of human nature which always pre-existed in a latent condition; yet he may perhaps be said to have prepared the way for the new conception of human progress by his inclusion of mental laws under biology.

Development of the Biological Doctrine.—In the 19th century the doctrine of evolution received new biological contents and became transformed from a vague, partly metaphysical theory to the dominant modern conception. At this point it is convenient to leave the guidance of Professor J. Sully and to follow closely T. H. Huxley, who in the 9th edition of this encyclopaedia traced the history of the growth of the biological idea of evolution from its philosophical beginnings to its efflorescence in Charles Darwin.

In the earlier half of the 18th century the term “evolution” was introduced into biological writings in order to denote the mode in which some of the most eminent physiologists of that time conceived that the generation of living things took place; in opposition to the hypothesis advocated, in the preceding century, by W. Harvey in that remarkable work[1] which would give him a claim to rank among the founders of biological science, even had he not been the discoverer of the circulation of the blood.

One of Harvey’s prime objects is to defend and establish, on the basis of direct observation, the opinion already held by Aristotle, that, in the higher animals at any rate, the formation of the new organism by the process of generation takes place, not suddenly, by simultaneous accretion of rudiments of all or the most important of the organs of the adult, nor by sudden metamorphosis of a formative substance into a miniature of the whole, which subsequently grows, but by epigenesis, or successive differentiation of a relatively homogeneous rudiment into the parts and structures which are characteristic of the adult.

“Et primo, quidem, quoniam per epigenesin sive partium superexorientium additamentum pullum fabricari certum est: quaenam pars ante alias omnes exstruatur, et quid de illa ejusque generandi modo observandum veniat, dispiciemus. Ratum sane est et in ovo manifeste apparet quod Aristoteles de perfectorum animalium generatione enuntiat: nimirum, non omnes partes simul fieri, sed ordine aliam post aliam; primumque existere particulam genitalem, cujus virtute postea (tanquam ex principio quodam) reliquae omnes partes prosiliant. Qualem in plantarum seminibus (fabis, puta, aut glandibus) gemmam sive apicem protuberantem cernimus, totius futurae arboris principium. Estque haec particula velut filius emancipatus seorsumque collocatus, et principium per se vivens; unde postea membrorum ordo describitur; et quaecunque ad absolvendum animal pertinent, disponuntur.[2] Quoniam enim nulla pars se ipsam generat; sed postquam generata est, se ipsam jam auget; ideo eam primum oriri necesse est, quae principium augendi contineat (sive enim planta, sive animal est, aeque omnibus inest quod vim habeat vegetandi, sive nutriendi),[3] simulque reliquas omnes partes suo quamque ordine distinguat et formet; proindeque in eadem primogenita particula anima primario inest, sensus, motusque, et totius vitae auctor et principium.” (Exercitatio 51.)

Harvey proceeds to contrast this view with that of the “Medici,” or followers of Hippocrates and Galen, who, “badly philosophizing,” imagined that the brain, the heart, and the liver were simultaneously first generated in the form of vesicles; and, at the same time, while expressing his agreement with Aristotle in the principle of epigenesis, he maintains that it is the blood which is the primal generative part, and not, as Aristotle thought, the heart.

In the latter part of the 17th century the doctrine of epigenesis thus advocated by Harvey was controverted on the ground of direct observation by M. Malpighi, who affirmed that the body of the chick is to be seen in the egg before the punctum sanguineum makes it appearance. But from this perfectly correct observation a conclusion which is by no means warranted was drawn, namely, that the chick as a whole really exists in the egg antecedently to incubation; and that what happens in the course of the latter process is no addition of new parts, “alias post alias natas,” as Harvey puts it, but a simple expansion or unfolding of the organs which already exist, though they are too small and inconspicuous to be discovered. The weight of Malpighi’s observations therefore fell into the scale of that doctrine which Harvey terms metamorphosis, in contradistinction to epigenesis.

The views of Malpighi were warmly welcomed on philosophical grounds by Leibnitz,[4] who found in them a support to his

  1. The Exercitationes de generatione animalium, which Dr George Ent extracted from him and published in 1651.
  2. De generatione animalium, lib. ii. cap. x.
  3. De generatione animalium, lib. ii. cap. iv.
  4. “Cependant, pour revenir aux formes ordinaires ou aux âmes matérielles, cette durée qu’il leur faut attribuer, à la place de celle qu’on avoit attribuée aux atomes pourroit faire douter si elles ne vont pas de corps en corps; ce qui seroit la métempsychose, à peu près comme quelques philosophes ont cru la transmission du mouvement