This page has been proofread, but needs to be validated.
506
FLIGHT AND FLYING


Fig. 13.—Wave track made by the wing in progressive flight. a, b, Crests of the wave; c, d, e, up strokes; x, x, down strokes; f, point corresponding to the anterior margin of the wing, and forming a centre for the downward rotation of the wing (a, g); g, point corresponding to the posterior margin of the wing, and forming a centre for the upward rotation of the wing (d, f).
Fig. 14.a, b, line along which the wing travels during extension and flexion. The arrows indicate the direction in which the wing is spread out in extension and closed or folded in flexion.
Fig. 15.—Right Wing of the Red-legged Partridge (Perdix rubra). Dorsal aspect as seen from above.
Fig. 16.—Right Wing of the Red-legged Partridge (Perdix rubra). Dorsal and ventral aspects as seen from behind; showing auger-like conformation of wing. Compare with figs. 11 and 18.
Fig. 17.—Right Wing of the Bat (Phyllocina gracilis). Dorsal aspect as seen from above.
Fig. 18.—Right Wing of the Bat (Phyllocina gracilis). Dorsal and ventral aspects, as seen from behind. These show the screw-like configuration of the wing, and also how the wing twists and untwists during its action.

“The wing of the bird, like that of the insect, is concavo-convex, and more or less twisted upon itself when extended, so that the anterior or thick margin of the pinion presents a different degree of curvature to that of the posterior or thin margin. This twisting is in a great measure owing to the manner in which the bones of the wing are twisted upon themselves, and the spiral nature of their articular surfaces—the long axes of the joints always intersecting each other at right angles, and the bones of the elbow and wrist making a quarter of a turn or so during extension and the same amount during flexion. As a result of this disposition of the articular surfaces, the wing may be shot out or extended, and retracted or flexed in nearly the same plane, the bones composing the wing rotating on their axes during either movement (fig. 14). The secondary action, or the revolving of the component bones on their own axes, is of the greatest importance in the movements of the wing, as it communicates to the hand and forearm, and consequently to the primary and secondary feathers which they bear, the precise angles necessary for flight. It in fact ensures that the wing, and the curtain or fringe of the wing which the primary and secondary feathers form, shall be screwed into and down upon the wind in extension, and unscrewed or withdrawn from the wind during flexion. The wing of the bird may therefore be compared to a huge gimlet or auger, the axis of the gimlet representing the bones of the wing, the flanges or spiral thread of the gimlet the primary and secondary feathers” (figs. 15 and 16).... “From this description it will be evident that by the mere rotation of the bones of the forearm and hand the maximum and minimum of resistance is secured much in the same way that this object is attained by the alternate dipping and feathering of an oar.”... “The wing, both when at rest and when in motion, may not inaptly be compared to the blade of an ordinary screw propeller as employed in navigation. Thus the general outline of the wing corresponds closely with the outline of the propeller (figs. 11, 16 and 18), and the track described by the wing in space is twisted upon itself propeller fashion[1] (figs. 12, 20, 21, 22, 23). The great velocity with which the wing is driven converts the impression or blur made by it into what is equivalent to a solid for the time being, in the same way that the spokes of a wheel in violent motion, as is well understood, more or less completelyoccupy the space contained within the rim or circumference of the wheel” (figs. 9, 20 and 21).

... “The wing of the bat bears a considerable resemblance to that of the insect, inasmuch as it consists of a delicate, semi-transparent, continuous membrane, supported in divers directions, particularly towards its anterior margin, by a system of osseous stays or stretchers which confer upon it the degree of rigidity requisite for flight. It is, as a rule, deeply concave on its under or ventral surface, and in this respect resembles the wing of the heavy-bodied birds. The movement of the bat’s wing in extension is a spiral one, the spiral running alternately from below upwards and forwards and from above downwards and backwards. The action of the wing of the bat, and the movements of its component bones, are essentially the same as in the bird” (figs. 17 and 18).

... “The wing strikes the air precisely as a boy’s kite would if it were jerked by its string, the only difference being that the kite is pulled forwards upon the wind by the string and the hand, whereas in the insect, bird and bat the wing is pushed forwards on the wind by the weight of the body and the power residing in the pinion itself” (fig. 19).[2]

Fig. 19.—The Cape Barn-owl (Strix capensis), showing the kite-like surfaces presented by the ventral aspect of the wings and body in flight.

The figure-of-8 and kite-like action of the wing referred to lead us to explain how it happens that the wing, which in many instances is a comparatively small and delicate organ, can yet attack the air with such vigour as to extract from it the recoil necessary to elevate and propel the flying creature. The accompanying figures from one of Pettigrew’s later memoirs[3] will serve to explain the rationale (figs. 20, 21, 22 and 23).

As will be seen from these figures, the wing during its vibration sweeps through a comparatively very large space. This space, as already explained, is practically a solid basis of support for the wing and for the flying animal. The wing attacks the air in such a manner as virtually to have no slip—this for two reasons. The wing reverses instantly and acts as a kite during nearly the entire down and up strokes. The angles, moreover, made by the wing with the horizon during the down and up strokes are at no two intervals the same, but (and this is a

  1. “The importance of the twisted configuration or screw-like form cannot be over-estimated. That this shape is intimately associated with flight is apparent from the fact that the rowing feathers of the wing of the bird are every one of them distinctly spiral in their nature; in fact, one entire rowing feather is equivalent—morphologically and physiologically—to one entire insect wing. In the wing of the martin, where the bones of the pinion are short, and in some respects rudimentary, the primary and secondary feathers are greatly developed, and banked up in such a manner that the wing as a whole presents the same curves as those displayed by the insect’s wing, or by the wing of the eagle, where the bones, muscles and feathers have attained a maximum development. The conformation of the wing is such that it presents a waved appearance in every direction—the waves running longitudinally, transversely and obliquely. The greater portion of the wing may consequently be removed without essentially altering either its form or its functions. This is proved by making sections in various directions, and by finding that in some instances as much as two-thirds of the wing may be lopped off without materially impairing the power of flight.”—Trans. Roy. Soc. Edin. vol. xxvi. pp. 325, 326.
  2. “On the Various Modes of Flight in relation to Aeronautics,” Proc. Roy. Inst., 1867; “On the Mechanical Appliances by which Flight is attained in the Animal Kingdom,” Trans. Linn. Soc., 1867, 26.
  3. “On the Physiology of Wings; being an analysis of the movements by which flight is produced in the Insect, Bat and Bird,” Trans. Roy. Soc. Edin. vol. 26.