This page has been proofread, but needs to be validated.
680 
FORTIFICATION AND SIEGECRAFT
[HISTORY

firearms permits of great elasticity in the disposition of the obstacle; and this simplifies some of the problems of defence.

Protection must be arranged mainly with reference to the enemy’s methods of attack and the weapons he uses. The obstacle, on the other hand, should be of such a nature as to bring out the best effects of the defender’s weapons. It follows from this that a well-armed force operating against a badly-armed uncivilized enemy may use with advantage very simple old-fashioned methods of protection; or even dispense with it altogether if the obstacle is a good one.

When the assailant has modern weapons the importance of protection is very great. In fact, it may be said that in proportion as missile weapons have grown more effective, the importance of protection and the difficulty of providing it have increased, while the necessity for a monumental physical obstacle has decreased.

The art of the engineer who is about to fortify consists in appreciating and harmonizing all the conditions of the problem, such as the weapons in use, nature of the ground, materials available, temper of assailants and defenders, strategical possibilities, expenditure to be incurred, and so forth. Few of these conditions are in themselves difficult to understand, but they are so many and their reactions are so complex that a real familiarity with all of them is essential to successful work. The keynote of the solution should be simplicity; but this is the first point usually lost sight of by the makers of “systems,” especially by those who during a long period of peace have time to give play to their imaginations.

Fortification is usually divided into two branches, namely permanent fortification and field fortification. Permanent fortifications are erected at leisure, with all the resources that a state can supply of constructive and mechanical skill, and are built of enduring materials. Field fortifications are extemporized by troops in the field, perhaps assisted by such local labour and tools as may be procurable, and with materials that do not require much preparation, such as earth, brushwood and light timber. There is also an intermediate branch known as semi-permanent fortification. This is employed when in the course of a campaign it becomes desirable to protect some locality with the best imitation of permanent defences that can be made in a short time, ample resources and skilled civilian labour being available.

The objects of fortification are various. The vast enceintes of Nineveh and Babylon were planned so that in time of war they might give shelter to the whole population of the country except the field army, with their flocks and herds and household stuff. The same idea may be seen to-day in the walls of such cities as Kano. In the middle ages feudal lords built castles for security against the attacks of their neighbours, and also to watch over towns or bridges or fords from which they drew revenue; whilst rich towns were surrounded with walls merely for the protection of their own inhabitants and their property. The feudal castles lost their importance when the art of cannon-founding was fairly developed; and in the leisurely wars of the 17th and 18th centuries, when roads were few and bad, a swarm of fortified towns, large and small, played a great part in delaying the march of victorious armies.

In the present day isolated forts are seldom used, and only for such purposes as to block passes in mountainous districts. Fortresses are used either to protect points of vital importance, such as capital cities, military depots and dockyards, or at strategic points such as railway junctions. Combinations of fortresses are also used for more general strategic purposes, as will be explained later.

I. History

The most elementary type of fortification is the thorn hedge, a type which naturally recurs from age to age under primitive conditions. Thus, Alexander found the villages of the Hyrcanians defended by thick hedges, and the same arrangements may be seen to-day among the least Ancient methods.civilized tribes of Africa. The next advance from the hedge is the bank of earth, with the exterior made steep by revetments of sods or hurdle-work. This has a double advantage over the hedge, as, besides being a better obstacle against assault, it gives the defenders an advantage of position in a hand-to-hand fight. Such banks formed the defences of the German towns in Caesar’s time, and they were constructed with a high degree of skill. Timber being plentiful, the parapets were built of alternate layers of stones, earth and tree trunks. The latter were built in at right angles to the length of the parapet, and were thus very difficult to displace, while the earth prevented their being set on fire. The bank was often strengthened by a palisade of tree trunks or hurdle-work.

After the bank the most important step in advance for a nation progressing in the arts was the wall, of masonry, sun-dried brick or mud. The history of the development of the wall and of the methods of attacking it is the history of fortification for several thousand years.

The first necessity for the wall was height, to give security against escalade. The second-was thickness, so that the defenders might have a platform on the top which would give them space to circulate freely and to use their weapons. A lofty wall, thick enough at the top for purposes of defence, would be very expensive if built of solid masonry; therefore the plan was early introduced of building two walls with a filling of earth or rubble between them. The face of the outer wall would be carried up a few feet above the platform, and crenellated to give protection against arrows and other projectiles.

The next forward step for the defence was the construction of towers at intervals along the wall. These provided flanking fire along the front; they also afforded refuges for the garrison in case of a successful escalade, and from them the platform could be enfiladed.

The evolution of the wall with towers was simple. The main requirements were despotic power and unlimited labour. Thus the finest examples of the system known to history are also amongst the earliest. One of these was Nineveh, built more than 2000 years B.C. The object of its huge perimeter, more than 50 m., has been mentioned. The wall was 120 ft. high and 30 ft. thick; and there were 1500 towers.

After this no practical advance in the art of fortification was made for a very long time, from a constructional point of view. Many centuries indeed elapsed before the inventive genius of man evolved engines and methods of attack fit to cope with such colossal obstacles.

The earliest form of attack was of course escalade, either by ladders or by heaping up a ramp of faggots or other portable materials. When the increasing height of walls made escalade too difficult, other means of attack had to be invented. Probably the first of these were the ram, for battering down the walls, and mining. The latter might have two objects: (a) to drive an underground gallery below the wall from the besiegers’ position into the fortress, or (b) to destroy the wall itself by undermining.

The use of missile engines for throwing heavy projectiles probably came later. They are mentioned in the preparations made for the defence of Jerusalem against the Philistines in the 8th century B.C. They are not mentioned in connexion with the siege of Troy. At the sieges of Tyre and Jerusalem by Nebuchadrezzar in 587 B.C. we first find mention of the ram and of movable towers placed on mounds to overlook the walls.

The Asiatics, however, had not the qualities of mind necessary for a systematic development of siegecraft, and it was left for the Greeks practically to create this science. Taking it up in the 5th century B.C. they soon, under Philip of Macedon and Alexander, arrived at a very high Classical times.degree of skill. They invented and systematized methods which were afterwards perfected by the Romans. Alexander’s siegecraft was extremely practical. His successors endeavoured to improve on it by increasing the size of their missile and other engines, which, however, were so cumbrous that they were of little use. When the Romans a little later took up the science they returned to the practical methods of Alexander, and by the time of Caesar’s wars had become past-masters of it. The