This page has been proofread, but needs to be validated.
ATTACK]
FORTIFICATION AND SIEGECRAFT
 709


of a sortie. The parallel was a trench 12 to 15 ft. wide and 3 ft. deep, the excavated earth being thrown forward to make a parapet 3 or 4 ft. high. In front of the first parallel and close to it were placed the batteries of the “first artillery position.”

While these batteries were engaged in silencing the enemy’s artillery, for which purpose most of them were placed in prolongation of the faces of the fortress so as to enfilade them, the “Approach Trenches” were being pushed forward. The normal attack included a couple of The attack. bastions and the ravelin between, with such faces of the fortress as could support them; and the approach trenches (usually three sets) were directed on the capitals of the bastions and ravelin, advancing in a zigzag so arranged that the prolongations of the trenches always fell clear of the fortress and could not be enfiladed.

Fig. 65, taken from Vauban’s Attack and Defence of Places, shows clearly the arrangement of trenches and batteries.

Fig. 65.—Regular Attack (Vauban).

After the approach trenches had been carried forward nearly half-way to the most advanced points of the covered way, the “second parallel” was constructed, and again the approach trenches were pushed forward. Midway between the second parallel and the covered way, short branches called Demi-parallels were thrown out to either flank of the attacks: and finally at the foot of the glacis came the third parallel. Thus there was always a secure position for a sufficient guard of the trenches. Upon an alarm the working parties could fall back and the guard would advance.

Trenches were either made by common trenchwork, flying trenchwork or sap. In the first two a considerable length of trench was excavated at one time by a large working party extended along the trench: flying trenchwork (formerly known as flying sap) being distinguished from common trenchwork by the use of gabions, by the help of which protection could be more quickly obtained. Both these kinds of trenchwork were commenced at night, the position of the trench having been previously marked out by tape. The “tasks” or quantities of earth to be excavated by each man were so calculated that by daybreak the trench would afford a fair amount of cover. Flying trenchwork was generally used for the 2nd parallel and its approaches, and as far beyond it as possible. In proportion as the attack drew nearer to the covered way, the fire of the defenders’ small-arms and wall-pieces naturally grew more effective, though by this time most of their artillery would have been dismounted by the fire of the siege batteries. It therefore became necessary before reaching the 3rd parallel to have recourse to sap.

Sapping required trained men. It consisted in gradually pushing forward the end of a narrow trench in the desired direction. At the sap-head was a squad of sappers. The leading man excavated a trench 1 ft. 6 in. wide and deep. To protect the head of the trench he had a shield on wheels, under cover of which he placed the Sapping. gabions in position one after another as the sap-head progressed. Other men following strengthened the parapet with fascines, and increased the trench to a depth of 3 ft., and a width of 2 ft. 6 in. to 3 ft. Fig. 66, taken from Vauban’s treatise on the attack, shows the process clearly. The sap after being completed to this extent could be widened at leisure to ordinary trench dimensions by infantry working parties.

Fig. 66.—Sapping (Vauban).

As the work at the sap-head was very dangerous, Vauban encouraged his sappers by paying them on the spot at piecework rates, which increased rapidly in proportion to the risk. He thus stimulated all concerned to do their best, and reckoned that under average conditions he could depend on a rate of progress for an ordinary sap of about 50 yds. in 24 hours.

It is interesting to compare the more recent method of sapping with that above described (fig. 67 taken from the Instruction in Military Engineering, 1896). It is no longer possible to place gabions in position at the sap-head under fire. Accordingly the leading sapper excavates to the full depth of 4 ft. 6 in., and the rate of progress is retarded proportionately, so that an advance of only 15 to 30 yds. in 24 hours can be reckoned on instead of 50. The head of the sap is protected by a number of half-filled sandbags, which the leading sapper throws forward as he goes on.

The nearer the approaches drew to the covered way, the more oblique became the zig-zags, so that little forward progress was made in proportion to the length of the trench. The approaches were then carried straight to the front, by means of the “double sap,” which consisted of two single saps worked together with a parapet on each side (fig. 68). To protect these from being enfiladed from the front, traverses had to be left at intervals, usually by turning the two saps at right angles to right or left for a few feet, then forward, and so on as shown in fig. 69, the distance apart of these traverses being of course regulated by the height from which the enemy’s fire commanded the trench.

The later stages in the attack are illustrated in fig. 70. From the third parallel the attack was pushed forward up the glacis by means of the double sap. It was then pushed right and left along the glacis, a little distance from the crest of the covered way. This was called “crowning” the covered way,