This page has been proofread, but needs to be validated.
300
FULTON, R.—FUMAROLE
  

FULTON, ROBERT (1765–1815), American engineer, was born in 1765 in Little Britain (now Fulton, Lancaster county), Pa. His parents were Irish, and so poor that they could afford him only a very scanty education. At an early age he was bound apprentice to a jeweller in Philadelphia, but subsequently adopted portrait and landscape painting as his profession. In his twenty-second year, with the object of studying with his countryman, Benjamin West, he went to England, and there became acquainted with the duke of Bridgewater, Earl Stanhope and James Watt. Partly by their influence he was led to devote his attention to engineering, especially in connexion with canal construction; he obtained an English patent in 1794 for superseding canal locks by inclined planes, and in 1796 he published a Treatise on the Improvement of Canal Navigation. He then took up his residence in Paris, where he projected the first panorama ever exhibited in that city, and constructed a submarine boat, the “Nautilus,” which was tried in Brest harbour in 1801 before a commission appointed by Napoleon I., and by the aid of which he was enabled to blow up a small vessel with a torpedo. It was at Paris also in 1803 that he first succeeded in propelling a boat by steam-power, thus realizing a design which he had conceived ten years previously. Returning to America he continued his experiments with submarine explosives, but failed to convince either the English, French or United States governments of the adequacy of his methods. With steam navigation he had more success. In association with Robert R. Livingston (q.v.), who in 1798 had been granted the exclusive right to navigate the waters of New York state with steam-vessels, he constructed the “Clermont,” which, engined by Boulton & Watt of Birmingham, began to ply on the Hudson between New York and Albany in 1807. The privilege obtained by Livingston in 1798 was granted jointly to Fulton and Livingston in 1803, and by an act passed in 1808 the monopoly was secured to them and their associates for a period depending on the number of steamers constructed, but limited to a maximum of thirty years. In 1814–1815, on behalf of the United States government, he constructed the “Fulton,” a vessel of 38 tons with central paddle-wheels, which was the first steam warship. He died at New York on the 24th of February 1815. Among Fulton’s inventions were machines for spinning flax, for making ropes, and for sawing and polishing marble.

See C. D. Colden, Life of Robert Fulton (New York, 1817); Robert H. Thurston, History of the Growth of the Steam-Engine (New York, 1878); George H. Preble, Chronological History of Steam Navigation (Philadelphia, 1883); and Mrs A. C. Sutcliffe, Robert Fulton and the Clermont (New York, 1909).


FULTON, a city and the county-seat of Callaway county, Missouri, U.S.A., 25 m. N.E. of Jefferson City. Pop. (1890) 4314; (1900) 4883 (1167 negroes); (1910) 5228. It is served by the Chicago & Alton railway. The city has an important stock market and manufactures fire-brick and pottery. At Fulton are the Westminster College (Presbyterian, founded in 1853), the Synodical College for Young Women (Pres., founded in 1871), the William Woods College for Girls (Christian Church, 1890), and the Missouri school for the deaf (1851). Here, too, is a state hospital for the insane (1847), the first institution of the kind in Missouri. The place was laid out as a town in 1825 and named Volney, but in honour of Robert Fulton the present name was adopted a little later. Fulton was incorporated in 1859.


FULTON, a city of Oswego county, New York, U.S.A., on the right bank of the Oswego river, about 10 m. S. by E. of Oswego. Pop. (1900) 5281; (1905, state census) 8847; (1910) 10,480. Fulton is served by the Delaware, Lackawanna & Western, the New York Central & Hudson River, and the New York, Ontario & Western railways, by electric railway to Oswego and Syracuse and by the Oswego Canal. The city has a Carnegie library. Ample water-power is furnished by the Oswego river, which here flows in a series of rapids, and the manufactures are many in kind. On the 3rd of July 1756, on an island (afterward called Battle Island) 4 m. N. of the present city of Fulton, a British force of about 300 under Captain John Bradstreet (1711–1774) defeated an attacking force of French and Indians (numbering about 700) under De Villiers. Soon after this, Bradstreet built a fort within the present limits of Fulton. The first civilian settler came in 1793, and the first survey (which included only a part of the subsequent village) was made in 1815. Fulton was incorporated as a village in 1835, and in April 1902 was combined with the village of Oswego Falls (pop. in 1900, 2925) and was chartered as a city.


FUM, or Funj Hwang, one of the four symbolical creatures which in Chinese mythology are believed to keep watch and ward over the Celestial Empire. It was begotten by fire, was born in the Hill of the Sun’s Halo, and its body bears inscribed on it the five cardinal virtues. It has the breast of a goose, the hindquarters of a stag, a snake’s neck, a fish’s tail, a fowl’s forehead, a duck’s down, the marks of a dragon, the back of a tortoise, the face of a swallow, the beak of a cock, is about six cubits high, and perches only on the woo-tung tree. The appearance of Fum heralds an age of universal virtue. Its figure is that which is embroidered on the dresses of some mandarins.


FUMARIC AND MALEIC ACIDS, two isomeric unsaturated acids of composition C4H4O4. Fumaric acid is found in fumitory (Fumaria officinalis), in various fungi (Agaricus piperatus, &c.), and in Iceland moss. It is obtained by heating malic acid alone to 150° C., or by heating it with hydrochloric acid (V. Dessaignes, Jahresb., 1856, p. 463) or with a large quantity of hydrobromic acids (A. Kekulé, Ann., 1864, 130, p. 21). It may also be obtained by boiling monobromsuccinic acid with water; by the action of dichloracetic acid and water on silver malonate (T. Komnenos, Ann., 1883, 218, p. 169); by the cyanide synthesis from acetylene di-iodide; and by heating maleic acid to 210° C. (Z. Skraup, Monats. f. Chemie, 1891, 12, p. 112). It crystallizes in small prisms or needles, and is practically insoluble in cold water. It sublimes to some extent at about 200° C., being partially converted into maleic anhydride and water, the reaction becoming practically quantitative if dehydrating agents be used. Reducing agents (zinc and caustic alkali, hydriodic acid, sodium amalgam, &c.) convert it into succinic acid. Bromine converts it into dibromsuccinic acid. Potassium permanganate oxidizes it to racemic acid (A. Kekulé and R. Anschutz, Ber., 1881, 14, p. 713). By long-continued heating with caustic soda at 100° C. it is converted into inactive malic acid.

Maleic acid is obtained by distilling malic or fumaric acids; by heating fumaric acid with acetyl chloride to 100° C; or by the hydrolysis of trichlorphenomalic acid (β-trichloracetoacrylic acid) [A. Kekulé, Ann., 1884, 223, p. 185]. It crystallizes in monoclinic prisms, which are easily soluble in water, melt at 130° C., and boil at 160° C., decomposing into water and maleic anhydride. When heated with concentrated hydrobromic or hydriodic acids, it is converted into fumaric acid. It yields an anilide; oxidation converts it into mesotartaric acid. Maleic anhydride is obtained by distilling fumaric acid with phosphorus pentoxide. It forms triclinic crystals which melt at 60° C. and boil at 196° C.

Both acids are readily esterified by the action of alkyl halides on their silver salts, and the maleic ester is readily transformed into the fumaric ester by warming with iodine, the same result being obtained by esterification of maleic acid in alcoholic solution by means of hydrochloric acid. Both acids yield acetylene by the electrolysis of aqueous solutions of their alkali salts, and on reduction both yield succinic acid, whilst by the addition of hydrobromic acid they both yield monobromsuccinic acid (R. Fittig, Ann., 1877, 188, p. 98). From these results it follows that the two acids are structurally identical, and the isomerism has consequently to be explained on other grounds. This was accomplished by W. Wislicenus [“Über die räumliche Anordnung der Atome,” &c., Trans, of the Saxon Acad. of Sciences (Math. Phys. Section), 1887, p. 14] by an extension of the van’t Hoff hypothesis (see Stereo-Isomerism). The formulae of the acids are written thus:

HC·CO2H  Maleic acid.  HC·CO2H  Fumaric acid.
HC. .·CO2H HO2C·C. .·H

These account for maleic acid readily yielding an anhydride, whereas fumaric acid does not, and for the behaviour of the acids towards bromine, fumaric acid yielding ordinary dibromsuccinic acid, and maleic acid the isomeric isodibromsuccinic acid.


FUMAROLE, a vent from which volcanic vapours issue, named indirectly from the Lat. fumariolum, a smoke-hole.