This page has been validated.
  
GOLD
197


so as to keep its contents suspended in the stream of water, which carries away the bulk of the lighter material, leaving the heavy minerals, together with any gold which may have been present. The washing is repeated until enough of the enriched sand is collected, when the gold is finally recovered by careful washing or “panning out” in a smaller pan. In Mexico and South America, instead of the pan, a wooden dish or trough, known as “batea,” is used.

The “cradle” is a simple appliance for treating somewhat larger quantities, and consists essentially of a box, mounted on rockers, and provided with a perforated bottom of sheet iron in which the “pay dirt” is placed. Water is poured on the dirt, and the rocking motion imparted to the cradle causes the finer particles to pass through the perforated bottom on to a canvas screen, and thence to the base of the cradle, where the auriferous particles accumulate on transverse bars of wood, called “riffles.”

The “tom” is a sort of cradle with an extended sluice placed on an incline of about 1 in 12. The upper end contains a perforated riddle plate which is placed directly over the riffle box, and under certain circumstances mercury may be placed behind the riffles. Copper plates amalgamated with mercury are also used when the gold is very fine, and in some instances amalgamated silver coins have been used for the same purpose. Sometimes the stuff is disintegrated with water in a “puddling machine,” which was used, especially in Australia, when the earthy matters are tenacious and water scarce. The machine frequently resembles a brickmaker’s wash-mill, and is worked by horse or steam power.

In workings on a larger scale, where the supply of water is abundant, as in California, sluices were generally employed. They are shallow troughs about 12 ft. long, about 16 to 20 in. wide and 1 ft. in depth. The troughs taper slightly so that they can be joined in series, the total length often reaching several hundred feet. The incline of the sluice varies with the conformation of the ground and the tenacity of the stuff to be washed, from 1 in 16 to 1 in 8. A rectangular trough of boards, whose dimensions depend chiefly on the size of the planks available, is set up on the higher part of the ground at one side of the claim to be worked, upon trestles or piers of rough stone-work, at such an inclination that the stream may carry off all but the largest stones, which are kept back by a grating of boards about 2 in. apart. The gravel is dug by hand and thrown in at the upper end, the stones kept back being removed at intervals by two men with four-pronged steel forks. The floor of the sluice is laid with riffles made of strips of wood 2 in. square laid parallel to the direction of the current, and at other points with boards having transverse notches filled with mercury. These were known originally as Hungarian riffles.

In larger plant the upper ends of the sluices are often cut in rock or lined with stone blocks, the grating stopping the larger stones being known as a “grizzly.” In order to save very fine and especially rusty particles of gold, so-called “under-current sluices” are used; these are shallow wooden tanks, 50 sq. yds. and upwards in area, which are placed somewhat below the main sluice, and communicate with it above and below, the entry being protected by a grating so that only the finer material is admitted. These are paved with stone blocks or lined with mercury riffles, so that from the greatly reduced velocity of flow, due to the sudden increase of surface, the finer particles of gold may collect. In order to save finely divided gold, amalgamated copper plates are sometimes placed in a nearly level position, at a considerable distance from the head of the sluice, the gold which is retained in it being removed from time to time. Sluices are often made double, and they are usually cleaned up—that is, the deposit rich in gold is removed from them—once a week.

The “pan” is now only used by prospectors, while the “cradle” and “tom” are practically confined to the Chinese; the sluice is considered to be the best contrivance for washing gold gravels.

2. The Amalgamation Process.—This method is employed to extract gold from both alluvial and reef deposits: in the first case it is combined with “hydraulic mining,” i.e. disintegrating auriferous gravels by powerful jets of water, and the sluice system described above; in the second case the vein stuff is prepared by crushing and the amalgamation is carried out in mills.

Hydraulic mining has for the most part been confined to the country of its invention, California, and the western territories of America, where the conditions favourable for its use are more fully developed than elsewhere—notably the presence of thick banks of gravel that cannot be utilized by other methods, and abundance of water, even though considerable work may be required at times to make it available. The general conditions to be observed in such workings may be briefly stated as follows: (1) The whole of the auriferous gravel, down to the “bed rock,” must be removed,—that is, no selection of rich or poor parts is possible; (2) this must be accomplished by the aid of water alone, or at times by water supplemented by blasting; (3) the conglomerate must be mechanically disintegrated without interrupting the whole system; (4) the gold must be saved without interrupting the continuous flow of water; and (5) arrangements must be made for disposing of the vast masses of impoverished gravel.

The water is brought from a ditch on the high ground, and through a line of pipes to the distributing box, whence the branch pipes supplying the jets diverge. The stream issues through a nozzle, termed a “monitor” or “giant,” which is fitted with a ball and socket joint, so that the direction of the jet may be varied through considerable angles by simply moving a handle. The material of the bank being loosened by blasting and the cutting action of the water, crumbles into holes, and the superincumbent mass, often with large trees and stones, falls into the lower ground. The stream, laden with stones and gravel, passes into the sluices, where the gold is recovered in the manner already described. Under the most advantageous conditions the loss of gold may be estimated at 15 or 20%, the amount recovered representing a value of about two shillings per ton of gravel treated. The loss of mercury is about the same, from 5 to 6 cwt. being in constant use per mile of sluice.

In working auriferous river-beds, dredges have been used with considerable success in certain parts of New Zealand and on the Pacific slope in America. The dredges used in California are almost exclusively of the endless-chain bucket or steam-shovel pattern. Some dredges have a capacity under favourable conditions of over 2000 cub. yds. of gravel daily. The gravel is excavated as in the ordinary form of endless-chain bucket dredge and dumped on to the deck of the dredge. It then passes through screens and grizzlies to retain the coarse gravel, the finer material passing on to sluice boxes provided with riffles, supplied with mercury. There are belt conveyers for discharging the gravel and tailings at the end of the vessel remote from the buckets. The water necessary to the process is pumped from the river; as much as 2000 gallons per minute is used on the larger dredges.

The dressing or mechanical preparation of vein stuff containing gold is generally similar to that of other ores (see Ore-dressing), except that the precious metal should be removed from the waste substances as quickly as possible, even although other minerals of value that are subsequently recovered may be present. In all cases the quartz or other vein stuff must be reduced to a very fine powder as a preliminary to further operations. This may be done in several ways, e.g. either (1) by the Mexican crusher or arrastra, in which the grinding is effected upon a bed of stone, over which heavy blocks of stone attached to cross arms are dragged by the rotation of the arms about a central spindle, or (2) by the Chilean mill or trapiche, also known as the edge-runner, where the grinding stones roll upon the floor, at the same time turning about a central upright—contrivances which are mainly used for the preparation of silver ores; but by far the largest proportion of the gold quartz of California, Australia and Africa is reduced by (3) the stamp mill, which is similar in principle to that used in Europe for the preparation of tin and other ores.

The stamp mill was first used in California, and its use has since spread over the whole world. In the mills of the Californian type the stamp is a cylindrical iron pestle faced with a chilled cast iron shoe, removable so that it can be renewed when necessary, attached to a round iron rod or lifter, the whole weighing from 600 to 900 ℔; stamps weighing 1320 ℔ are in use in the Transvaal. The lift is effected by cams acting on the under surface of tappets, and formed by cylindrical boxes keyed on to the stems of the lifter about one-fourth of their length from the top. As, however, the cams, unlike those of European stamp mills, are placed to one side of the stamp, the latter is not only lifted but turned partly round on its own axis, whereby the shoes are worn down uniformly. The height of lift may be between 4 and 18 in., and the number of blows from 30 to over 100 per minute. The stamps are usually arranged in batteries of five; the order of working is usually 1, 4, 2, 5, 3, but other arrangements, e.g. 1, 3, 5, 2, 4, and 1, 5, 2, 4, 3, are common. The stuff, previously broken to about 2-in. lumps in a rock-breaker, is fed in through an aperture at the back of the “battery box,” a constant supply of water is admitted from above, and mercury in a finely divided state is added at frequent intervals. The discharge of the comminuted material takes place through an aperture, which is covered by a thin steel plate perforated with numerous slits about 1/50th in. broad and 1/2 in. long, a certain volume being discharged at every blow and carried forward by the flushing water over an apron or table in front, covered by copper plates filled with mercury. Similar plates are often used to catch any particles of gold that may be thrown back, while the main operation is so conducted that the bulk of the gold may be reduced to the state of amalgam by bringing the two metals into intimate contact under the stamp head, and remain in the battery. The tables in front are laid at an incline of about 8° and are about 13 ft. long; they collect from 10 to 15% of the whole gold; a further quantity is recovered by leading the sands through a gutter about 16 in. broad and 120 ft. long, also lined with amalgamated copper plates, after the pyritic and other heavy minerals have been separated by depositing in catch pits and other similar contrivances.

When the ore does not contain any considerable amount of free gold mercury is not, as a rule, used during the crushing, but the amalgamation is carried out in a separate plant. Contrivances of the most diverse constructions have been employed. The most primitive is the rubbing together of the concentrated crushings with mercury in iron mortars. Barrel amalgamation, i.e. mixing the crushings with mercury in rotating barrels, is rarely used, the process being wasteful, since the mercury is specially apt to be “floured” (see below).