This page has been proofread, but needs to be validated.
HEATING
163

this account it is necessary to exercise some skill in forming the joint, or the socket of the pipe will be split; numbers of pipes are undoubtedly spoilt in this way. Suitable proportions of materials to form a rust joint are 90 parts by weight of iron borings well mixed with 2 parts of flowers of sulphur, and 1 part of powdered sal-ammoniac. Another joint, less rigid but sound and durable, is made with yarn and white and red lead. The white and red lead are mixed together to form a putty, and are filled into the socket alternately with layers of well-caulked yarn, starting with yarn and finishing off with the lead mixture.

Fig. 8.

Iron expands when heated to the temperature of boiling water (212° F.) about 1 part in 900, that is to say, a pipe 100 ft. long would expand or increase in length when heated to this temperature about 11/2 in., an amount which seems small but which would be quite sufficient Joints
for pipes.
to destroy one or more of the joints if provision were not made to prevent damage. The amount of expansion increases as the temperature is raised; at 340° F. it is 21/2 in. in 100 ft. With wrought iron pipes bends may be arranged, as shown in fig. 8, to take up this expansion. With cast iron pipe this cannot be done, and no length of piping over 40 ft. should be without a proper expansion joint. The pipes are best supported on rollers which allow of movement without straining the joints.

There are several joints in general use for the best class of work which are formed with the aid of india-rubber rings or collars, any expansion being divided amongst the whole number of joints. In the rubber ring joint an india-rubber ring is used; slightly less in diameter than the pipe. The rubber is circular in section, and about 1/2 in. thick, and is stretched on the extreme end of a pipe which is then forced into the next socket. This joint is durable, secure and easily made; it allows for expansion and by its use the risk of pipe sockets being cracked is avoided. It is much used for greenhouse heating works. Richardson’s patent joint (fig. 9) is a good form of this class of joint. The pipes have specially shaped ends between which a rubber collar is placed, the joint being held together by clips. The result is very satisfactory and will stand heavy water pressure. Messenger’s joint (fig. 10) is designed to allow more freedom of expansion and at the same time to withstand considerable pressure; one loose cast iron collar is used, and another is formed as a socket on the end of the pipe itself. One end of each pipe is plain, so that it may be cut to any desired length; pipes with shaped ends obviously must be obtained in the exact lengths required. Jones’s expansion joint (fig. 11) is somewhat similar to Messenger’s but it is not capable of withstanding so great a pressure. In this case both collars of cast iron are loose.

Fig. 9.Fig. 10.
Fig. 11.

Radiators (really convectors) were in their primitive design coils of pipe, used to give a larger heating area than the single pipe would afford. They are now usually of special design, and may be divided into three classes—indirect radiators, direct radiators and direct ventilating radiators. Radiators. Indirect radiators are placed beneath the floor of the apartment to be heated and give off heat through a grating. This method is frequently adopted in combined schemes of heating and ventilating; the fresh air is warmed by being passed over their surfaces previously to being admitted through the gratings into the room. Direct radiators are a development of the early coil of pipe; they are made in various types and designs and are usually of cast iron. Ventilating radiators are similar, but have an inlet arrangement at the base to allow external air to pass over the heating surface before passing out through the perforations. Radiators should not be fixed directly on to the main heating pipe, but always on branches of smaller diameter leading from the flow pipe to one end of the radiator and back to the main return pipe from the other end; they may then be easily controlled by a valve placed on the branch from the flow pipe. To each radiator should be fitted an air tap, which when opened will permit the escape of any air that has accumulated in the coil; otherwise free circulation is impossible, and the full benefit of the heat is not obtained.

Fig. 12.

A plentiful supply of hot water is a necessity in every house for domestic and hygienic purposes. In small houses all requirements may be satisfied with a boiler heated by the kitchen fire. For large buildings where large quantities of hot water are used an independent boiler of suitable Hot-water supply. size should be installed. Every installation is made up of a boiler or other water heater, a tank or cylinder to contain the water when heated, and a cistern of cold water, the supply from which to the system is regulated automatically by a ball valve. These containers, proportioned to the required supply of hot water, are connected with each other by means of pipes, a “flow” and a “return” connecting the boiler with the cylinder or tank (fig. 12). The flow pipe starts from the top of the boiler and is connected near the top of the cylinder, the return pipe joining the lower portions of the cylinder and boiler. The supply from the cold water cistern enters the bottom of the cylinder, and thence travels by way of the return pipe to the boiler, where it is heated, and back through the flow pipe to the cylinder, which is thus soon filled with hot water. A flow pipe which serves also for expansion is taken from the top of the cylinder to a point above the cold-water supply and turned down to prevent the ingress of dirt. From this pipe at various points are taken the supply pipes to baths, lavatories, sinks and other appliances. It will be observed that in fig. 12 the cylinder is placed in proximity to the boiler; this is the usual and most effective method, but it may be placed some distance away if desired. The tank system is of much earlier date than this cylinder system, and although the two resemble each other in many respects, the tank system is in practice the less effective. The tank is placed above the level of the topmost draw off, and often in a cupboard which it will warm sufficiently to permit of its being used as a linen airing closet. An expansion pipe is taken from the top of the tank to a point above the roof. All draw off services are taken off from the flow pipe which connects the boiler with the tank. This method differs from that adopted in the cylinder system, where all services are led from the top of the cylinder. A suitable proportion between the size of the tank or cylinder and that of the boiler is 8 or 10 to 1. Water may also be heated by placing a coil of steam or high-pressure hot-water pipes in a water tank (fig. 6), the water heated in this way circulating in the manner already described. An alternative plan is to pass the water through pipes placed in a steam chest.

Cylinders, tanks and independent boilers should be encased in a non-conducting material such as silicate cotton, thick felt or asbestos composition. The two first mentioned are affixed