This page has been validated.
  
HERSCHEL, SIR F. W.
393

on the subject were communicated by him to the Royal Society, extending from the date of the discovery in 1781 to 1815. A noteworthy peculiarity in Herschel’s mode of observation led to the discovery of this planet. He had observed that the spurious diameters of stars are not much affected by increasing the magnifying powers, but that the case is different with other celestial objects; hence if anything in his telescopic field struck him as unusual in aspect, he immediately varied the magnifying power in order to decide its nature. Thus Uranus was discovered; and had a similar method been applied to Neptune, that planet would have been found at Cambridge some months before it was recognized at Berlin.

We now come to the beginning of Herschel’s most important series of observations, culminating in what ought probably to be regarded as his capital discovery. A material part of the task which he had set himself embraced the determination of the relative distances of the stars from our sun and from each other. Now, in the course of his scrutiny of the heavens, he had observed many stars in apparently very close contiguity, but often differing greatly in relative brightness. He concluded that, on the average, the brighter star would be the nearer to us, the smaller enormously more distant; and considering that an astronomer on the earth, in consequence of its immense orbital displacement of some 180 millions of miles every six months, would see such a pair of stars under different perspective aspects, he perceived that the measurement of these changes should lead to an approximate determination of the stars’ relative distances. He therefore mapped down the places and aspects of all the double stars that he met with, and communicated in 1782 and 1785 very extensive catalogues of the results. Indeed, his very last scientific memoir, sent to the Royal Astronomical Society in the year 1822, when he was its first president and already in the eighty-fourth year of his age, related to these investigations. In the memoir of 1782 he threw out the hint that these apparently contiguous stars might be genuine pairs in mutual revolution; but he significantly added that the time had not yet arrived for settling the question. Eleven years afterwards (1793), he remeasured the relative positions of many such couples, and we may conceive what his feelings must have been at finding his prediction verified. For he ascertained that some of these stars circulated round each other, after the manner required by the laws of gravitation, and thus demonstrated the action among the distant members of the starry firmament of the same mechanical laws which bind together the harmonious motions of our solar system. This sublime discovery, announced in 1802, would of itself suffice to immortalize his memory. If only he had lived long enough to learn the approximate distances of some of these binary combinations, he would at once have been able to calculate their masses relative to that of our own sun; and the quantities being, as we now know, strictly comparable, he would have found another of his analogical conjectures realized.

In the year 1782 Herschel was invited to Windsor by George III., and accepted the king’s offer to become his private astronomer, and henceforth devote himself wholly to a scientific career. His salary was fixed at £200 per annum, to which an addition of £50 per annum was subsequently made for the astronomical assistance of his sister. Dr Watson, to whom alone the amount was mentioned, made the natural remark, “Never before was honour purchased by a monarch at so cheap a rate.” In this way the great astronomer removed from Bath, first to Datchet and soon afterwards permanently to Slough, within easy access of his royal patron at Windsor.

The old pursuits at Bath were soon resumed at Slough, but with renewed vigour and without the former professional interruptions. The greater part, in fact, of the papers already referred to are dated from Datchet and Slough; for the magnificent astronomical speculations in which he was engaged, though for the most part conceived in the earlier portion of his philosophical career, required years of patient observation before they could be fully examined and realized.

It was at Slough in 1783 that he wrote his first memorable paper on the “Motion of the Solar System in Space,”—a sublime speculation, yet through his genius realized by considerations of the utmost simplicity. He returned to the same subject with fuller details in 1805. It was also after his removal to Slough that he published his first memoir on the construction of the heavens, which from the first had been the inspiring idea of his varied toils. In a long series of remarkable papers, addressed as usual to the Royal Society, and extending from the year 1784 to 1818, when he was eighty years of age, he demonstrated the fact that our sun is a star situated not far from the bifurcation of the Milky Way, and that all the stars visible to us lie more or less in clusters scattered throughout a comparatively thin, but immensely extended stratum. At one time he imagined that his powerful instruments had pierced through this stellar stratum, and that he had approximately determined the form of some of its boundaries. In the last of his memoirs, having convinced himself of his error, he admitted that to his telescopes the Milky Way was “fathomless.” On either side of this assemblage of stars, presumably in ceaseless motion round their common centre of gravity, Herschel discovered a canopy of discrete nebulous masses, such as those from the condensation of which he supposed the whole stellar universe to have been formed,—a magnificent conception, pursued with a force of genius and put to the practical test of observation with an industry almost incredible.

Hitherto we have said nothing about the great reflecting telescope, of 40 ft. focal length and 4 ft. aperture, the construction of which is often, though mistakenly, regarded as his chief performance. The full description of this celebrated instrument will be found in the 85th volume of the Transactions of the Royal Society. On the day that it was finished (August 28, 1789) Herschel saw at the first view, in a grandeur not witnessed before, the Saturnian system with six satellites, five of which had been discovered long before by C. Huygens and G. D. Cassini, while the sixth, subsequently named Enceladus, he had, two years before, sighted by glimpses in his exquisite little telescope of 61/2 in. aperture, but now saw in unmistakable brightness with the towering giant he had just completed. On the 17th of September he discovered a seventh, which proved to be the nearest to the globe of Saturn. It has since received the name of Mimas. It is somewhat remarkable that, notwithstanding his long and repeated scrutinies of this planet, the eighth satellite, Hyperion, and the crape ring should have escaped him.

Herschel married, on the 8th of May 1788, the widow of Mr John Pitt, a wealthy London merchant, by whom he had an only son, John Frederick William. The prince regent conferred a Hanoverian knighthood upon him in 1816. But a far more valued and less tardy distinction was the Copley medal assigned to him by his associates in the Royal Society in 1781.

He died at Slough on the 25th of August 1822, in the eighty-fourth year of his age, and was buried under the tower of St Laurence’s Church, Upton, within a few hundred yards of the old site of the 40-ft. telescope. A mural tablet on the wall of the church bears a Latin inscription from the pen of the late Dr Goodall, provost of Eton College.

See Mrs John Herschel, Memoir of Caroline Herschel (1876); E. S. Holden, Herschel, his Life and Works (1881); A. M. Clerke, The Herschels and Modern Astronomy (1895); E. S. Holden and C. S. Hastings, Synopsis of the Scientific Writings of Sir William Herschel (Washington, 1881); Baron Laurier, Éloge historique, Paris Memoirs (1823), p. lxi.; F. Arago, Analyse historique, Annuaire du Bureau des Longitudes (1842), p. 249; Arago, Biographies of Scientific Men, p. 167; Madame d'Arblay's Diary, passim; Public Characters (1798–1799), p. 384 (with portrait); J. Sime, William Herschel and his Work (1900). Herschel’s photometric Star Catalogues were discussed and reduced by E. C. Pickering in Harvard Annals, vols. xiv. p. 345, xxiii. p. 185, and xxiv.  (C. P.; A. M. C.) 

HERSCHEL, SIR JOHN FREDERICK WILLIAM, Bart. (1792–1871), English astronomer, the only son of Sir William Herschel, was born at Slough, Bucks, on the 7th of March 1792. His scholastic education commenced at Eton, but maternal fears or prejudices soon removed him to the house of a private tutor. Thence, at the early age of seventeen, he was sent to St John’s College, Cambridge, and the form and method of the