This page has been proofread, but needs to be validated.
744  
HORTICULTURE
[PRINCIPLES


disposition of buds or shoots on a given plant. An inferior variety of pear, for instance, may suddenly produce a shoot bearing fruit of superior quality; a beech tree, without obvious cause, a shoot with finely divided foliage; or a camellia an unwontedly fine flower. When removed from the plant and treated as cuttings or grafts, such sports may be perpetuated. Many garden varieties of flowers and fruits have thus originated. The cause of their production is very obscure.

Formation of Flowers.—Flowers, whether for their own sake or as the necessary precursors of the fruit and seed, are objects of the greatest concern to the gardener. As a rule they are not formed until the plant has arrived at a certain degree of vigour, or until a sufficient supply of nourishment has been stored in the tissues of the plant. The reproductive process of which the formation of the flower is the first stage being an exhaustive one, it is necessary that the plant, as gardeners say, should get “established” before it flowers. Moreover, although the green portions of the flower do indeed perform the same office as the leaves, the more highly coloured and more specialized portions, which are further removed from the typical leaf-form, do not carry on those processes for which the presence of chlorophyll is essential; and the floral organs may, therefore, in a rough sense, be said to be parasitic upon the green parts. A check or arrest of growth in the vegetative organs seems to be a necessary preliminary to the development of the flower.

A diminished supply of water at the root is requisite, so as to check energy of growth, or rather to divert it from leaf-making. Partial starvation will sometimes effect this; hence the grafting of free-growing fruit trees upon dwarfing stocks, as before alluded to, and also the “ringing” or girdling of fruit trees, i.e. the removal from the branch of a ring of bark, or the application of a tight cincture, in consequence of which the growth of the fruits above the wound or the obstruction is enhanced. On the same principle the use of small pots to confine the roots, root-pruning and lifting the roots, and exposing them to the sun, as is done in the case of the vine in some countries, are resorted to. A higher temperature, especially with deficiency of moisture, will tend to throw a plant into a flowering condition. This is exemplified by the fact that the temperature of the climate of Great Britain is too low for the flowering, though sufficiently high for the growth of many plants. Thus the Jerusalem artichoke, though able to produce stems and tubers abundantly, only flowers in exceptionally hot seasons.

Forcing.—The operation of forcing is based upon the facts just mentioned. By subjecting a plant to a gradually increasing temperature, and supplying water in proportion, its growth may be accelerated; its season of development may be, as it were, anticipated; it is roused from a dormant to an active state. Forcing therefore demands the most careful adjustment of temperature and supplies of moisture and light.

Deficiency of light is less injurious than might at first be expected, because the plant to be forced has stored up in its tissues, and available for use, a reserve stock of material formed through the agency of light in former seasons. The intensity of the colour of flowers and the richness of flavour of fruit are, however, deficient where there is feebleness of light. Recent experiments show that the influence of electric light on chlorophyll is similar to that of sunlight, and that deficiencies of natural light may to some extent be made good by its use. The employment of that light for forcing purposes would seem to be in part a question of expense. The advantage hitherto obtained from its use has consisted in the rapidity with which flowers have been formed and fruits ripened under its influence, circumstances which go towards compensating for the extra cost of production.

Retardation.—The art of retarding the period of flowering in certain plants consists, in principle, in the artificial application of cold temperatures whereby the resting condition induced by low winter temperature is prolonged. For commercial purposes, crowns of lily of the valley, tulip and other bulbs, and such deciduous woody plants as lilac and deciduous species of rhododendron, while in a state of rest, are packed in wet moss and introduced into cold-storage chambers, where they may be kept in a state of quiescence, it desired, throughout the following summer. The temperature of the cold chamber is varied from the freezing-point of water, to a few degrees lower, according to the needs of the plants under treatment. When required for use they are removed to cool sheds to thaw, and are then gradually inured to higher temperatures. The chief advantages of retarded plants are:—(a) they may be flowered almost at will; (b) they are readily induced to flower at those times when unretarded plants refuse to respond to forcing. Cold-storage chambers form a part of the equipment of most of the leading establishments where flowers are grown for market.

Double Flowers.—The taste of the day demands that “double flowers” should be largely grown. Though in many instances, as in hyacinths, they are less beautiful than single ones, they always present the advantage of being less evanescent. Under the vague term “double” many very different morphological changes are included. The flower of a double dahlia, e.g. offers a totally different condition of structure from that of a rose or a hyacinth. The double poinsettia, again, owes its so-called double condition merely to the increased number of its scarlet involucral leaves, which are not parts of the flower at all. It is reasonable, therefore, to infer that the causes leading to the production of double flowers are varied. A good deal of difference of opinion exists as to whether they are the result of arrested growth or of exuberant development, and accordingly whether restricted food or abundant supplies of nourishment are the more necessary for their production. It must suffice here to say that double flowers are most commonly the result of the substitution of brightly-coloured petals for stamens or pistils or both, and that a perfectly double flower where all the stamens and pistils are thus metamorphosed is necessarily barren. Such a plant must needs be propagated by cuttings. It rarely happens, however, that the change is quite complete throughout the flower, and so a few seeds may be formed, some of which may be expected to reproduce the double-blossomed plants. By continuous selection of seed from the best varieties, and “roguing” or eliminating plants of the ordinary type, a “strain” or race of double flowers is gradually produced.

Formation of Seed—Fertilization.—In fertilization—the influence in flowering plants of the male-cell in the pollen tube upon the egg-cell in the ovule (see Botany)—there are many circumstances of importance horticulturally, to which, therefore, brief reference must be made. Flowers, generally speaking, are either self-fertilized, cross-fertilized or hybridized. Self-fertilization occurs when the pollen of a given flower affects the egg-cell of the same individual flower. Cross-fertilization varies both in manner and degree. In the simplest instances the pollen of one flower fertilizes the ovules of another on the same plant, owing to the stamens arriving at maturity in any one flower earlier or later than the pistils.

Cross-fertilization must of necessity occur when the flowers are structurally unisexual, as in the hazel, in which the male and female flowers are monoecious, or separate on the same plant, and in the willow, in which they are dioecious, or on different plants. A conspicuous example of a dioecious plant is the common aucuba, of which for years only the female plant was known in Britain. When, through the introduction of the male plant from Japan, its fertilization was rendered possible, ripe berries, before unknown, became common ornaments of the shrub.

The conveyance of pollen from one flower to another in cross-fertilization is effected naturally by the wind, or by the agency of insects and other creatures. Flowers that require the aid of insects usually offer some attraction to their visitors in the shape of bright colour, fragrance or sweet juices. The colour and markings of a flower often serve to guide the insects to the honey, in the obtaining of which they are compelled either to remove or to deposit pollen. The reciprocal adaptations of insects and flowers demand attentive observation on the part of the gardener concerned with the growing of grapes, cucumbers, melons and strawberries, or with the raising of new and improved varieties of plants. In wind-fertilized plants the flowers are comparatively inconspicuous and devoid of much attraction for insects; and their pollen is smoother and smaller, and better adapted for transport by the wind, than that of insect-fertilized plants, the roughness of which adapts it for attachment to the bodies of insects.

It is very probable that the same flower at certain times and seasons is self-fertilizing, and at others not so. The defects which cause gardeners to speak of certain vines as “shy setters,” and of certain strawberries as “blind,” may be due either to unsuitable conditions of external temperature, or to the non-accomplishment, from some cause or other, of cross-fertilization. In a vinery, tomato-house or a peach-house it is often good practice at the time of flowering to tap the branches smartly with a stick so as to ensure the dispersal of the pollen. Sometimes more delicate and direct manipulation is required, and the gardener has himself to convey the pollen from one flower to another, for which purpose a small camel’s-hair pencil is generally suitable. The degree of fertility varies greatly according to external conditions, the structural and functional arrangements just alluded to, and other causes which may roughly be called constitutional. Thus, it often happens that an apparently very slight change in climate alters the degree of fertility. In a particular country or at certain seasons one flower will be self-sterile or nearly so, and another just the opposite.

Hybridization.—Some of the most interesting results and many of the gardener’s greatest triumphs have been obtained by hybridization, i.e. the crossing of two individuals not of the same but of two distinct species of plants, as, for instance, two species of rhododendron or two species of orchid (see Hybridism). It is obvious that hybridization differs more in degree than in kind from cross-fertilization. The occurrence of hybrids in nature explains the difficulty experienced by botanists in deciding on what is a species, and the widely different limitations of the term adopted by different observers in the case of willows, roses, brambles, &c. The artificial process is practically the same in hybridization as in cross-fertilization, but usually requires more care. To prevent self-fertilization, or the access of insects, it is advisable to remove the stamens and even the corolla from the flower to be impregnated, as its own pollen or that of a flower of the same species is often found to be “prepotent.” There are, however, cases, e.g. some passion-flowers and rhododendrons, in which a flower is more or less sterile with its own, but fertile with foreign pollen, even when this is from a distinct species. It is a singular circumstance that reciprocal crosses are not always or even often possible; thus, one rhododendron may