Open main menu
This page has been proofread, but needs to be validated.

of the medusa differs only in greater elaboration and differentiation of the cell-elements, which are also more concentrated to form distinct tissues.

EB1911 Hydromedusae - Carmarina hastata.jpg

Fig. 26.Carmarina (Geryonia) hastata, one of the Trachomedusae.
(After Haeckel.)

a, Nerve ring.
a′,  Radial nerve.
b, Tentaculocyst.
c, Circular canal.
e, Radiating canal.
g″, Ovary.
h, Peronia or cartilaginous process ascending from the cartilaginous margin of the disk centripetally in the outer surface of the jelly-like disk; six of these are perradial, six interradial, corresponding to the twelve solid larval tentacles, resembling those of Cunina.
k, Dilatation (stomach) of the manubrium.
l, Jelly of the disk.
p, Manubrium.
t, Tentacle (hollow and tertiary, i.e. preceded by six perradial and six interradial solid larval tentacles).
u, Cartilaginous margin of the disk covered by thread-cells.
v, Velum.

EB1911 Hydromedusae - Stomotoca divisa.jpg

After O. Maas in Results of theAlbatrossExpedition, Museum of Comparative Zoology, Cambridge, Mass., U.S.A.

Fig. 27.Stomotoca divisa, one of the Tiaridae (Anthomedusae).

The ectoderm furnishes the general epithelial covering of the body, and the muscular tissue, nervous system and sense-organs. The external epithelium is flat on the ex-umbral surface, more columnar on the sub-umbral surface, where it forms the muscular tissue of the sub-umbrella and the velum. The nematocysts of the ectoderm may be grouped to form batteries on the tentacles, umbrellar margin and oral lappets. In places the nematocysts may be crowded so thickly as to form a tough, supporting, “chondral” tissue, resembling cartilage, chiefly developed at the margin of the umbrella and forming streaks or bars supporting the tentacles (“Tentakelspangen,” peronia) or the tentaculocysts (“Gehörspangen,” otoporpae).

The muscular tissue of the Hydromedusae is entirely ectodermal. The muscle-fibres arise as processes from the bases of the epithelial cells; such cells may individually become sub-epithelial in position, as in the polyp; or, in places where muscular tissue is greatly developed, as in the velum or sub-umbrella, the entire muscular epithelium may be thrown into folds in order to increase its surface, so that a deeper sub-epithelial muscular layer becomes separated completely from a more superficial body-epithelium.

In its arrangement the muscular tissue forms two systems: the one composed of striated fibres arranged circularly, that is to say, concentrically round the central axis of the umbrella; the other of non-striated fibres running longitudinally, that is to say, in a radial direction from, or (in the manubrium) parallel to, the same ideal axis. The circular system is developed continuously over the entire sub-umbral surface, and the velum represents a special local development of this system, at a region where it is able to act at the greatest mechanical advantage in producing the contractions of the umbrella by which the animal progresses. The longitudinal system is discontinuous, and is subdivided into proximal, medial and distal portions. The proximal portion forms the retractor muscles of the manubrium, or proboscis, well developed, for example, in Geryonia. The medial portion forms radiating tracts of fibres, the so-called “bell-muscles” running underneath, and parallel to, the radial canals; when greatly developed, as in Tiaridae, they form ridges, so-called mesenteries, projecting into the sub-umbral cavity. The distal portions form the muscles of the tentacles. In contrast with the polyp, the longitudinal muscle-system is entirely ectodermal, there being no endodermal muscles in craspedote medusae.

EB1911 Hydromedusae - Muscular Cells of Medusae Lizzia.jpg

Fig. 28.—Muscular Cells of Medusae (Lizzia). The uppermost is a purely muscular cell from the sub-umbrella; the two lower are epidermo-muscular cells from the base of a tentacle; the upstanding nucleated portion forms part of the epidermal mosaic on the free surface of the body. (After Hertwig.)

The nervous system of the medusa consists of sub-epithelial ganglion-cells, which form, in the first place, a diffuse plexus of nervous tissue, as in the polyp, but developed chiefly on the sub-umbral surface; and which are concentrated, in the second place, to form a definite central nervous system, never found in the polyp. In Hydromedusae the central nervous system forms two concentric nerve-rings at the margin of the umbrella, near the base of the velum. One, the “upper” or ex-umbral nerve-ring, is derived from the ectoderm on the ex-umbral side of the velum; it is the larger of the two rings, containing more numerous but smaller ganglion-cells, and innervates the tentacles. The other, the “lower” or sub-umbral nerve-ring, is derived from the ectoderm on the sub-umbral side of the velum; it contains fewer but larger ganglion-cells and innervates the muscles of the velum (see diagram in article Medusae). The two nerve-rings are connected by fibres passing from one to the other.

EB1911 Hydromedusae - Tiaropsis rosea showing adradial Statocysts.jpg

After O. Maas, Craspedoten Medusen der Siboga Expedition, by permission of E. S. Brill & Co.

Fig. 29.Tiaropsis rosea (Ag. and Mayer) showing the eight adradial Statocysts, each close to an Ocellus. Cf. fig. 30.

The sensory cells are slender epithelial cells, often with a cilium or stiff protoplasmic process, and should perhaps be regarded as the only ectoderm-cells which retain the primitive ciliation of the larval ectoderm, otherwise lost in all Hydrozoa. The sense-cells form, in the first place, a diffuse system of scattered sensory cells, as in the polyp, developed chiefly on the manubrium, the tentacles and the margin of the umbrella, where they form a sensory ciliated epithelium covering the nerve-centres; in the second place, the sense-cells are concentrated to form definite sense-organs, situated always at the margin of the umbrella, hence often termed “marginal bodies.” The possession of definite sense-organs at once distinguishes the medusa from the polyp, in which they are never found.

The sense-organs of medusae are of two kinds—first, organs sensitive to light, usually termed ocelli (fig. 29); secondly, organs commonly termed otocysts, on account of their resemblance to the auditory vesicles of higher animals, but serving for the sense of balance and orientation, and therefore given the special name of statocysts (fig. 30). The sense-organs may be tentaculocysts, i.e. modifications of a tentacle, as in Trachylinae, or developed from the margin of the umbrella, in no connexion with a tentacle (or, if so connected, not producing any modification in the tentacle), as in Leptolinae. In Hydromedusae the sense-organs are always exposed at the umbrellar margin (hence Gymnophthalmata), while in Scyphomedusae they are covered over by flaps of the umbrellar margin (hence Steganophthalmata).

The statocysts present in general the structure of either a knob or a closed vesicle, composed of (1) indifferent supporting epithelium: (2) sensory, so-called auditory epithelium of slender cells, each