Open main menu
This page has been proofread, but needs to be validated.

Especially noteworthy in the germinal budding of Margellium is the formation of the entocodon, as in the vegetative budding of the indirect type.

5. Sporogony.—This method of reproduction has been described by E. Metchnikoff in Cunina and allied genera. In individuals either of the male or female sex, germ-cells which are quite undifferentiated and neutral in character, become amoeboid, and wander into the endoderm. They divide each into two sister-cells, one of which—the spore—becomes enveloped by the other. The spore-cell multiplies by division, while the enveloping cell is nutrient and protective. The spore cell gives rise to a “spore-larva,” which is set free in the coelenteron and grows into a medusa. Whether sporogony occurs also in the polyp or not remains to be proved.

6. Sexual Reproduction and Embryology.—The ovum of Hydromedusae is usually one of a large number of oögonia, and grows at the expense of its sister-cells. No regular follicle is formed, but the oöcyte absorbs nutriment from the remaining oögonia. In Hydra the oöcyte is a large amoeboid cell, which sends out pseudopodia amongst the oögonia and absorbs nutriment from them. When the oöcyte is full grown, the residual oögonia die off and disintegrate.

EB1911 Hydromedusae - Budding from the Ectoderm in Margellium.jpg

Fig. 47.—Budding from the Ectoderm (germinal epithelium) in Margellium. (After C. Chun.)

A, The epithelium becomes two-layered.
B, The lower layer forms a solid mass of cells, which (C) becomes a vesicle, the future endoderm, containing the coelenteric cavity (coel), while the outer layer furnishes the future ectoderm.
D, E, F,  a thickening of the ectoderm on the distal side of the bud forms an entocodon (Gc).
G, H, Formation of the medusae.
s.c, Sub-umbral cavity.
r.c, Radial canal.
st, Stomach, which in H acquires a secondary communication with the digestive cavity of the mother.
cc, Circular canal.
v, Velum.
t, Tentacle.

The spermatogenesis and maturation and fertilization of the germ-cells present nothing out of the common and need not be described here. These processes have been studied in detail by A. Brauer [2] for Hydra.

The general course of the development is described in the article Hydrozoa. We may distinguish the following series of stages: (1) ovum; (2) cleavage, leading to formation of a blastula; (3) formation of an inner mass or parenchyma, the future endoderm, by immigration or delamination, leading to the so-called parenchymula-stage; (4) formation of an archenteric cavity, the future coelenteron, by a splitting of the internal parenchyma, and of a blastopore, the future mouth, by perforation at one pole, leading to the gastrula-stage; (5) the outgrowth of tentacles round the mouth (blastopore), leading to the actinula-stage; and (6) the actinula becomes the polyp or medusa in the manner described elsewhere (see articles Hydrozoa, Polyp and Medusa). This is the full, ideal development, which is always contracted or shortened to a greater or less extent. If the embryo is set free as a free-swimming, so-called planula-larva, in the blastula, parenchymula, or gastrula stage, then a free actinula stage is not found; if, on the other hand, a free actinula occurs, then there is no free planula stage.

The cleavage of the ovum follows two types, both seen in Tubularia (Brauer [3]). In the first, a cleavage follows each nuclear division; in the second, the nuclei multiply by division a number of times, and then the ovum divides into as many blastomeres as there are nuclei present. The result of cleavage in all cases is a typical blastula, which when set free becomes oval and develops a flagellum to each cell, but when not set free, it remains spherical in form and has no flagella.

The germ-layer formation is always by immigration or delamination, never by invagination. When the blastula is oval and free-swimming the inner mass is formed by unipolar immigration from the hinder pole. When the blastula is spherical and not set free, the germ-layer formation is always multipolar, either by immigration or by delamination, i.e. by tangential division of the cells of the blastoderm, as in Geryonia, or by a mixture of immigration and delamination, as in Hydra, Tubularia, &c. The blastopore is formed as a secondary perforation at one spot, in free-swimming forms at the hinder pole. Formation of archenteron and blastopore may, however, be deferred till a later stage (actinula or after).

The actinula stage is usually suppressed or not set free, but it is seen in Tubularia (fig. 48), where it is ambulatory, in Gonionemus (Trachomedusae), and in Cunina (Narcomedusae), where it is parasitic.

EB1911 Hydromedusae - Free Actinula of Tubularia.jpg

Modified from a plate by L. Agassiz, Contributions to Nat. Hist. U.S., iv.

Fig. 48.—Free Actinula of Tubularia.

In Leptolinae the embryonic development culminates in a polyp, which is usually formed by fixation of a planula (parenchymula), rarely by fixation of an actinula. The planula may fix itself (1) by one end, and then becomes the hydrocaulus and hydranth, while the hydrorhiza grows out from the base; or (2) partly by one side and then gives rise to the hydrorhiza as well as to the other parts of the polyp; or (3) entirely by its side, and then forms a recumbent hydrorhiza from which a polyp appears to be budded as an upgrowth.

In Trachylinae the development produces always a medusa, and there is no polyp-stage. The medusa arises direct from the actinula-stage and there is no entocodon formed, as in the budding described above.

Life-cycles of the Hydromedusae.—The life-cycle of the Leptolinae consists of an alternation of generations in which non-sexual individuals, polyps, produce by budding sexual individuals, medusae, which give rise by the sexual process to the non-sexual polyps again, so completing the cycle. Hence the alternation is of the type termed metagenesis. The Leptolinae are chiefly forms belonging to the inshore fauna. The Trachylinae, on the other hand, are above all oceanic forms, and have no polyp-stage, and hence there is typically no alternation in their life-cycle. It is commonly assumed that the Trachylinae are forms which have lost the alternation of generations possessed by them ancestrally, through secondary simplification of the life-cycle. Hence the Trachylinae are termed “hypogenetic” medusae to contrast them with the metagenetic Leptolinae. The whole question has, however, been argued at length by W. K. Brooks [4], who adduces strong evidence for a contrary view, that is to say, for regarding the direct type of development seen in Trachylinae as more primitive, and the metagenesis seen in Leptolinae as a secondary complication introduced into the life-cycle by the acquisition of larval budding. The polyp is regarded, on this view, as a form phylogenetically older than the medusa, in short, as nothing more than a sessile actinula. In Trachylinae the polyp-stage is passed over, and is represented only by the actinula as a transitory embryonic stage. In Leptolinae the actinula becomes the sessile polyp which has acquired the power of budding and producing individuals either of its own or of a higher rank; it represents a persistent larval stage and remains in a sexually immature condition as a neutral individual, sex being an attribute only of the final stage in the development, namely the medusa. The polyp of the Leptolinae has reached the limit of its individual development and is incapable of becoming itself a medusa, but only produces medusa-buds; hence a true alternation of generations is produced. In Trachylinae also the beginnings of a similar metagenesis can be found. Thus in Cunina octonaria, the ovum develops into an actinula which buds daughter-actinulae; all of them, both parent and offspring, develop into medusae, so that there is no alternation of generations, but only larval multiplication. In Cunina parasitica, however, the ovum develops into an actinula, which buds actinulae as before, but only the daughter-actinulae develop into medusae, while the original, parent-actinula dies off; here, therefore, larval budding has led to a true alternation of generations. In Gonionemus the actinula becomes fixed and polyp-like, and reproduces by budding, so that here also an alternation of generations may occur. In the Leptolinae we must first substitute polyp for actinula, and then a condition is found which can be compared to the case of Cunina parasitica or Gonionemus, if we suppose that neither the parent-actinula (i.e. founder-polyp) nor its offspring by budding (polyps of the colony) have the power of becoming medusae, but only of producing medusae by budding. For further arguments and illustrations the reader must be referred to Brooks’s most interesting memoir. The whole theory is one most