This page has been proofread, but needs to be validated.
GRAPTOLITOIDEA]
HYDROMEDUSAE
155


hydroid such as Hydractinia to the hydrocoralline Millepora is not great.

Hickson considers that the families Milleporidae and Stylasteridae should stand quite apart from one another and should not be united in one order. The nearest approach to the Stylasteridae is perhaps to be found in Ceratella, with its arborescent trophosome formed of anastomosing coenosarcal tubes supported by a thick perisarc and covered by a common ectoderm. Ceratella stands in much the same relation to the Stylasteridae that Hydractinia does to the Milleporidae, in both cases the chitinous perisarc being replaced by the solid coenosteum to which the hydrocorallines owe the second half of their name.

Order IV. Graptolitoidea (Rhabdophora, Allman).—This order has been constituted for a peculiar group of palaeozoic fossils, which have been interpreted as the remains of the skeletons of Hydrozoa of an extinct type.

A typical graptolite consists of an axis bearing a series of tooth-like projections, like a saw. Each such projection is regarded as representing a cup or hydrotheca, similar to those borne by a calyptoblastic hydroid, such as Sertularia. The supposed hydrothecae may be present on one side of the axis only (monoprionid) or on both sides (diprionid); the first case may be conjectured to be the result of uniserial (helicoid) budding, the second to be produced by biserial (scorpioid) budding. In one division (Retiolitidae) the axis is reticulate. In addition to the stems bearing cups, there are found vesicles associated with them, which have been interpreted as gonothecae or as floats, that is to say, air-bladders, acting as hydrostatic organs for a floating polyp-colony.

Since no graptolites are known living, or, indeed, since palaeozoic times, the interpretation of their structure and affinities must of necessity be extremely conjectural, and it is by no means certain that they are Hydrozoa at all. It can only be said that their organization, so far as the state of their preservation permits it to be ascertained, offers closer analogies with the Hydrozoa, especially the Calyptoblastea, than with any other existing group of the animal kingdom.

See the treatise of Delage and Hérouard (Hydrozoa, [4]), and the article Graptolites.

Order V. Trachylinea.—Hydromedusae without alternation of generations, i.e. without a hydroid phase; the medusa develops directly from the actinula larva, which may, however, multiply by budding. Medusae with sense-organs represented by otocysts derived from modified tentacles (tentaculocysts), containing otoliths of endodermal origin, and innervated from the ex-umbral nerve-ring.

This order, containing the typical oceanic medusae, is divided into two sub-orders.

Sub-order 1. Trachomedusae.—Tentacles given off from the margin of the umbrella, which is entire, i.e. not lobed or indented; tentaculocysts usually enclosed in vesicles; gonads on the radial canals. The medusae of this order are characterized by the tough, rigid consistence of the umbrella, due partly to the dense nature of the mesogloea, partly to the presence of a marginal rim of chondral tissue, consisting of thickened ectoderm containing great numbers of nematocysts, and forming, as it were, a cushion-tyre supporting the edge of the umbrella. Prolongations from the rim of chondral tissue may form clasps or peronia supporting the tentacles. The tentacles are primarily four in number, perradial, alternating with four interradial tentaculocysts, but both tentacles and sense-organs may be multiplied and the primary perradii may be six instead of four (fig. 26). The tentacles are always solid, containing an axis of endoderm-cells resembling notochordal tissue or plant-parenchyma, and are but moderately flexible. The sense-organs are tentaculocysts which are usually enclosed in vesicles and may be sunk far below the surface. The gonads are on the radial canals or on the stomach (Ptychogastridae), and each gonad may be divided into two by a longitudinal sub-umbral muscle-tract. The radial canals are four, six, eight or more, and in some genera blindly-ending centripetal canals are present (fig. 26). The stomach may be drawn out into the manubrium, forming a proboscis (“Magenstiel”) of considerable length.

The development of the Trachomedusae, so far as it is known, shows an actinula-stage which is either free (larval) or passed over in the egg (foetal) as in Geryonia; in no case does there appear to be a free planula-stage. The actinula, when free, may multiply by larval budding, but in all cases both the original actinula and all its descendants become converted into medusae, so that there is no alternation of generations. In Gonionemus the actinula becomes attached and polyp-like and reproduces by budding.

After Haeckel, System der Medusen, by permission of Gustav Fischer.

Fig. 64. Olindias mülleri.

The Trachomedusae are divided into the following families:

1. Petasidae (Petachnidae).—Four radial canals, four gonads; stomach not prolonged into the manubrium, which is relatively short; tentaculocysts free. Petasus and other genera make up this family, founded by Haeckel, but no other naturalist has ever seen them, and it is probable that they are simply immature forms of other genera.

2. Olindiadae, with four radial canals and four gonads; manubrium short; ring-canals giving off blind centripetal canals; tentaculocysts enclosed. Olindias mülleri (fig. 64) is a common Mediterranean species. Other genera are Aglauropsis, Gossea and Gonionemus; the last named bears adhesive suckers on the tentacles. Some doubt attaches to the position of this family. It has been asserted that the tentaculocysts are entirely ectodermal and that either the family should be placed amongst the Leptomedusae, or should form, together with certain Leptomedusae, an entirely distinct order. In Gonionemus, however, the concrement-cells are endodermal.

3. Trachynemidae.—Eight radial canals, eight gonads, stomach not prolonged into manubrium; tentaculocysts enclosed. Rhopalonema, Trachynema, &c.

After E. T. Browne, Proc. Zool. Soc. of London.

Fig. 65.Aglantha rosea (Forbes), a British medusa.

4. Ptychogastridae (Pectyllidae).—As in the preceding, but with suckers on the tentacles. Ptychogastria Allman (= Pectyllis), a deep-sea form.

5. Aglauridae.—Eight radial canals, two, four or eight gonads; tentacles numerous; tentaculocysts free; stomach prolonged into manubrium. Aglaura, Aglantha (fig. 65), &c., with eight gonads; Stauraglaura with four; Persa with two. Amphogona, hermaphrodite, with male and female gonads on alternating radial canals.

6. Geryonidae.—Four or six radial canals; gonads band-like; stomach prolonged into a manubrium of great length; tentaculocysts enclosed. Liriope, &c., with four radial canals; Geryonia, Carmarina (fig. 26), &c., with six.

7. Halicreidae.—Eight very broad radial canals; ex-umbrella often provided with lateral outgrowths; tentacles differing in size, but in a single row. Halicreas.

Sub-order 2. Narcomedusae.—Margin of the umbrella-lobed, tentacles arising from the ex-umbrella at some distance from the margin; tentaculocysts exposed, not enclosed in vesicles; gonads on the sub-umbral floor of the stomach or of the gastric pouches.