Open main menu
This page needs to be proofread.

number of rotations which a steel shaft would endure before breaking.,

3 5. As actually made, manganese steel contains about 12% of manganese and 1-50% of carbon. Although the presence of 1- 50% of manganese makes steel relatively brittle, and although a further addition at first increases this brittleness, so that steel containing between 4 and 5-5% can be pulverized under the hammer, yet a still further increase gives very great ductility, accompanied by great hardness-a combination of properties which was not possessed by any other known substance when this remarkable alloy, known as Hadf1eld's manganese steel, was discovered. Its ductility, to which it owes its value, is profoundly affected by the rate of cooling. Sudden cooling makes the metal extremely ductile, and slow cooling makes it brittle. *ts behaviour in this respect is thus the opposite of that of carbon steel. But its great hardness is not materially affected by the rate of cooling. It is used extensively for objects which require both hardness and ductility, such as rock-crushing machinery, railway crossings, mine-car wheels and safes. The burglar's blow-pipe locally “ draws the temper, ” i.e. softens a spot on a hardened carbon steel or chrome steel safe by simply heating it, so that as soon as it has again cooled he can drill through it and introduce his charge of dynamite. But neither this nor any other procedure softens manganese steel rapidly. Yet this very fact that it is unalterably hard has limited its use, because of the great difficulty of cutting it to shape, which has in general to be done with emery wheels instead of the usual iron-cutting tools. Another defect is its relatively low elastic limit. » -

36. Chrome sieel, which usually contains about 2 % of chromium and 0-So to 2% of carbon, owes its value to combining, when in the “ hardened ” or suddenly cooled state, intense hardness with a high elastic limit, so that it is neither deformed permanently nor cracked by extremely violent shocks. For this reason it is the material generally if not always used for armour-piercing projectiles. It is much used also for certain rock-crushing machinery (the shoes and dies of stamp-mills) and for safes. These are made of alternate layers of soft wrought iron and chrome steel hardened by sudden cooling. The hardness of the hardened chrome steel resists the burglar's drill, and the ductility of the wrought iron the blows of his sledge. Vanadium in small quantities, 0- 15 or O'2O(%, , is said to improve steel greatly, especially in increasing its resistance to shock and to often-repeated stress. But the improvement may be due wholly to the considerable chromium content of these socalled vanadium steels.

37. Tungsten steel, which usually contains from 5 to IO(% of tungsten and from 1 to 2% of carbon, is used for magnets, because of its great retentivity.

38. Chrome-tzmgsleu or High-speed Steel.-Steel with a large content of both chromium and tungsten has the very valuable property of “ red-hardness, ” i.e. of retaining its hardness and hence its power of cutting iron and other hard substances, even when it is heated to dull redness, say 600° C. (IIIZO F.) by the friction of the work which it is doing. Hence a machinist can cut steel or iron nearly six times as fast with a lathe tool of this steel as with one of carbon steel, because with the latter the cutting speed must be so slow that the cutting tool is not heated by the friction above say 250° C. (482° F.), lest it be unduly softened or “tempered” (§ 29). This effect of chromium, tungsten and carbon jointly consists essentially in raising the “ tempering temperature, " i.e. that to which the metal, in which by suitable thermal treatment the iron molecules have been brought to the allotropic 'y or B state or a mixture of both, can be heated without losing its hardness through the escape of that iron into the a. state. In short, these elements seem to impede the allotropic change of the iron itself. 'I' he composition of this steel is as follows:- .

The usual limits. Apparently the best.

Carbon . . o-32 to 1-28 o-68 to 0-67

Manganese . . o-03, , o-30 o-o7, , o-11

('hromium . . 2-23, , 7-02 3-95, , 5-47

Tungsten . 9-25, , 25-45 17-81, , 1 -19-39.

Impzlrllies.-The properties of iron and steel, like those of most of the metals, are profoundly influenced by the presence of small and sometimes extremely small quantities of certain impurities, of which the most important are phosphorus and sulphur, the former derived chiefly from apatite (phosphate of lime) and other minerals which accompany the iron OIC itself, the latter from the pyrite found not only in most iron ores but in nearly all coal and coke. All commercial iron and steel contain more or less of both these impurities, the influence of which is so strong that a variation of 0-01 %, Le. of one part, in 10,000, of either of them has a noticeable effect. The best tool steel should not contain more than o-02 % of either, and in careful practice it is often specified that the phosphorus and sulphur respectively shall not exceed 0-04 and 0-05%- in the steel for important bridges, or 0-06 and 0-07% in rail'steel, though some very prudent engineers allow as much as -085% or even 0-10% of phosphorus in rails.

40. The specific effect of phosphor-us is to make the metal cold-short, i.e. brittle in the cold, apparently because it increases the size and the sharpness of demarcation of the crystalline grains of which the mass is made up. The specific effect of sulphur is to make the metal red-short, i.e. brittle, when at a red heat, by forming a network of iron sulphide which encases these crystalline grains and thus plays the part of a weak link in a strong chain.

41.) Oxygenjprobably dissolved in the iron as ferrous oxide FeO, also makes the metal red-short. ' I

42. Manganese by itself rather lessens than increases the malleableness and, indeed, the general merit of the metal, but it is added intentionally, in quantities even as large as 1- 5% to palliate the effects of sulphur and oxygen. With sulphur it forms a sulphide which draws together into almost harmless drops, instead of encasing the grains of iron. With oxygen it probably forms manganous oxide, which is less harmful than ferrous oxide. (See § 35.) ' V

43. Ores of I ron.-Even. though the earth seems to be a huge iron meteor with but a thin covering of rocks, the exasperating proneness of iron to oxidize explains readily why this metal is only rarely found native, except in the form of meteorites. They are four important iron ores, magnetite, haematite, limonite and siderite, and one of less but still considerable importance, pyrite or pyrites. - .

44. Magnetite, Fe3O4, contains 72-41 % of iron. It crystallizes in the cubical system, often in beautiful octahedral and rhombic dodecahedra. It is black with a black streak. Its specific gravity 1s5-2, and its hardness 5-5 to 6-5. It IS very magnetic, and sometimes po ar.

45. Haematite, or red haematite, Fe¢O3, contains 70%, of iron. It -crystallizes in the rhombohedral system. Its colour varies from brilliant bluish-grey to deep red. Its streak is always red. Its specific gravity is T5-3 and its hardness 5-5 to 6-5. 46. Limonite, 2 e2O3, 3H¢O, contains 59-9% Of iron. Its colour varies from light brown to black. Its streak is yellowish-black, its specific gravity 3-6 to 4-0, and its hardness I5Ito 5-5. Limonite and the related minerals, turgite, 2F e2O3+ 20, and gothite, Fe2O3-l-H2(), are grouped together under the term “ brown haema tite." ~

47. Siderite, or spathic iron ore, FeCO3, crystallizes in the rhombo hedral s stem and contains 48-28 'f-Q of iron. Its colour yaries from yellowish-brown to grey. Its specific gravity is 3:7 to 3-9, and its hardness 3-5 to 4-5. The clayey siderite of the British coal measures is called "' clay band, ” and that containing bituminous matter is called “ black band.” '-48.

Pyrite, FeS2, contains 46'7% of iron. It crystallizes in the cubic system, usually in cubes, pentagonal dodecahedra or octahedral, often of great beauty and perfection. It is golden-yellovtg, with a greenish or brownish-black streak. Its specific gravity is 4-83 to 5-2, its hardness 6 to 6-5. Though it contains far too much sulphur to be used i11 iron manufacture without first being desulphurized, yet reat quantities of slightly cupriferous pyrite, after yielding nearly all; their sulphur in the manufacture of sulphuric acid, , and most of the remainder in the wet extraction of their copper, are then used under the name of “ blue billy " or “ purple -ore, " as an ore of iron, a use which= is likely to increase greatly in importance with the gradual exhaustion of the richest deposits of the oxidized ores. 40. The Ores actually I mpure.-As these five minerals actually exist in the earth's crust they are usually more or less impure

chemically, and they are almost always mechanically mixed with