This page has been proofread, but needs to be validated.
LAPLACE
201


in 1787, of an entire group of remarkable discoveries. It would be difficult, in the whole range of scientific literature, to point to a memoir of equal brilliancy with that published (divided into three parts) in the volumes of the Academy for 1784, 1785 and 1786. The long-sought cause of the “great inequality” of Jupiter and Saturn was found in the near approach to commensurability of their mean motions; it was demonstrated in two elegant theorems, independently of any except the most general considerations as to mass, that the mutual action of the planets could never largely affect the eccentricities and inclinations of their orbits; and the singular peculiarities detected by him in the Jovian system were expressed in the so-called “laws of Laplace.” He completed the theory of these bodies in a treatise published among the Paris Memoirs for 1788 and 1789; and the striking superiority of the tables computed by J. B. J. Delambre from the data there supplied marked the profit derived from the investigation by practical astronomy. The year 1787 was rendered further memorable by Laplace’s announcement on the 19th of November (Memoirs, 1786), of the dependence of lunar acceleration upon the secular changes in the eccentricity of the earth’s orbit. The last apparent anomaly, and the last threat of instability, thus disappeared from the solar system.

With these brilliant performances the first period of Laplace’s scientific career may be said to have closed. If he ceased to make striking discoveries in celestial mechanics, it was rather their subject-matter than his powers that failed. The general working of the great machine was now laid bare, and it needed a further advance of knowledge to bring a fresh set of problems within reach of investigation. The time had come when the results obtained in the development and application of the law of gravitation by three generations of illustrious mathematicians might be presented from a single point of view. To this task the second period of Laplace’s activity was devoted. As a monument of mathematical genius applied to the celestial revolutions, the Mécanique céleste ranks second only to the Principia of Newton.

The declared aim of the author[1] was to offer a complete solution of the great mechanical problem presented by the solar system, and to bring theory to coincide so closely with observation that empirical equations should no longer find a place in astronomical tables. His success in both respects fell little short of his lofty ideal. The first part of the work (2 vols. 4to, Paris, 1799) contains methods for calculating the movements of translation and rotation of the heavenly bodies, for determining their figures, and resolving tidal problems; the second, especially dedicated to the improvement of tables, exhibits in the third and fourth volumes (1802 and 1805) the application of these formulae; while a fifth volume, published in three instalments, 1823–1825, comprises the results of Laplace’s latest researches, together with a valuable history of progress in each separate branch of his subject. In the delicate task of apportioning his own large share of merit, he certainly does not err on the side of modesty; but it would perhaps be as difficult to produce an instance of injustice, as of generosity in his estimate of others. Far more serious blame attaches to his all but total suppression in the body of the work—and the fault pervades the whole of his writings—of the names of his predecessors and contemporaries. Theorems and formulae are appropriated wholesale without acknowledgment, and a production which may be described as the organized result of a century of patient toil presents itself to the world as the offspring of a single brain. The Mécanique céleste is, even to those most conversant with analytical methods, by no means easy reading. J. B. Biot, who assisted in the correction of its proof sheets, remarked that it would have extended, had the demonstrations been fully developed, to eight or ten instead of five volumes; and he saw at times the author himself obliged to devote an hour’s labour to recovering the dropped links in the chain of reasoning covered by the recurring formula. “Il est aisé à voir.”[2]

The Exposition du système du monde (Paris, 1796) has been styled by Arago “the Mécanique céleste disembarrassed of its analytical paraphernalia.” Conclusions are not merely stated in it, but the methods pursued for their attainment are indicated. It has the strength of an analytical treatise, the charm of a popular dissertation. The style is lucid and masterly, and the summary of astronomical history with which it terminates has been reckoned one of the masterpieces of the language. To this linguistic excellence the writer owed the place accorded to him in 1816 in the Academy, of which institution he became president in the following year. The famous “nebular hypothesis” of Laplace made its appearance in the Système du monde. Although relegated to a note (vii.), and propounded “Avec la défiance que doit inspirer tout ce qui n’est point un résultat de l’observation ou du calcul,” it is plain, from the complacency with which he recurred to it[3] at a later date, that he regarded the speculation with considerable interest. That it formed the starting-point, and largely prescribed the course of thought on the subject of planetary origin is due to the simplicity of its assumptions, and the clearness of the mechanical principles involved, rather than to any cogent evidence of its truth. It is curious that Laplace, while bestowing more attention than they deserved on the crude conjectures of Buffon, seems to have been unaware that he had been, to some extent, anticipated by Kant, who had put forward in 1755, in his Allgemeine Naturgeschichte, a true though defective nebular cosmogony.

The career of Laplace was one of scarcely interrupted prosperity. Admitted to the Academy of Sciences as an associate in 1773, he became a member in 1785, having, about a year previously, succeeded E. Bezout as examiner to the royal artillery. During an access of revolutionary suspicion, he was removed from the commission of weights and measures; but the slight was quickly effaced by new honours. He was one of the first members, and became president of the Bureau of Longitudes, took a prominent place at the Institute (founded in 1796), professed analysis at the École Normale, and aided in the organization of the decimal system. The publication of the Mécanique céleste gained him world-wide celebrity, and his name appeared on the lists of the principal scientific associations of Europe, including the Royal Society. But scientific distinctions by no means satisfied his ambition. He aspired to the rôle of a politician, and has left a memorable example of genius degraded to servility for the sake of a riband and a title. The ardour of his republican principles gave place, after the 18th Brumaire, to devotion towards the first consul, a sentiment promptly rewarded with the post of minister of the interior. His incapacity for affairs was, however, so flagrant that it became necessary to supersede him at the end of six weeks, when Lucien Bonaparte became his successor. “He brought into the administration,” said Napoleon, “the spirit of the infinitesimals.” His failure was consoled by elevation to the senate, of which body he became chancellor in September 1803. He was at the same time named grand officer of the Legion of Honour, and obtained in 1813 the same rank in the new order of Reunion. The title of count he had acquired on the creation of the empire. Nevertheless he cheerfully gave his voice in 1814 for the dethronement of his patron, and his “suppleness” merited a seat in the chamber of peers, and, in 1817, the dignity of a marquisate. The memory of these tergiversations is perpetuated in his writings. The first edition of the Système du monde was inscribed to the Council of Five Hundred; to the third volume of the Mécanique céleste (1802) was prefixed the declaration that, of all the truths contained in the work, that most precious to the author was the expression of his gratitude and devotion towards the “pacificator of Europe”; upon which noteworthy protestation the suppression in the editions of the Théorie des probabilités subsequent to the restoration, of the original dedication to the emperor formed a fitting commentary.

During the later years of his life, Laplace lived much at Arcueil, where he had a country-place adjoining that of his friend C. L. Berthollet. With his co-operation the Société d’Arcueil was formed, and he occasionally contributed to its Memoirs. In this peaceful retirement he pursued his studies with unabated ardour, and received with uniform courtesy distinguished visitors from all parts of the world. Here, too, he died, attended by his physician, Dr Majendie, and his mathematical coadjutor, Alexis Bouvard, on the 5th of March 1827. His last words were: “Ce que nous connaissons est peu de chose, ce que nous ignorons est immense.”

Expressions occur in Laplace’s private letters inconsistent

  1. “Plan de l’Ouvrage,” Œuvres, tom. i. p 1.
  2. Journal des savants (1850).
  3. Méc. cél., tom. v. p. 346.