This page has been proofread, but needs to be validated.
LEPIDOPTERA
469

diamond-back moth (Plutella cruciferarum) to the densely woven cocoon of the silkworms (Bombycidae and Saturniidae) or the hard shell-like covering of the eggars (Lasiocampidae). Frequently foreign substances are worked up with the silk and serve to strengthen the cocoon, such as hairs from the body of the caterpillar itself, as among the “tigers” (Arctiidae) or chips of wood, as with the timber-burrowing larva of the “goat” (Cossus). In many families of Lepidoptera we can trace a degeneration of the cocoon. Thus, the pupae of most owl moths (Noctuidae) and hawk moths (Sphingidae) lie buried in an earthen cell. Among the butterflies we find that the cocoon is reduced to a pad of silk which gives attachment to the cremaster; in the Pieridae there is in addition a girdle of silk around the waist-region of the pupa, but the pupae of the Nymphalidae (figs. 11, 65) simply hang from the supporting pad by the tail-end. Poulton has shown that the colours of some exposed pupae vary with the nature of the surroundings of the larva during the final stage.

After Ratzeburg, Insect Life, vol. 2 (U.S. Dept. Agr.).

Fig. 16.—Pupa of Gypsy Moth (Porthetria dispar) sheltered in leaves joined by silken threads. Below is the cast larval cuticle.

When the pupal stage is complete the insect has to make its way out of the cocoon. In the lower families of moths it is the pupa which comes out at least partially, working itself onwards by the spines on its abdominal segments; the pupa of the primitive Micropteryx has functional mandibles with which it bites through the cocoon. In the higher Lepidoptera the pupa is immovable, and the imago, after the ecdysis of the pupal cuticle, must emerge. This emergence is in some cases facilitated by the secretion of an acid or alkaline solvent discharged from the mouth or from the hind-gut, which weakens the cocoon—so that the delicate moth can break through without injury.

As might be expected, the conditions to which larva and pupa are subjected have often a marked influence on the nature of the imago. An indifferent food-supply for the larva leads to a dwarfing of the moth or butterfly. Many converging lines of experiment and observation tend to show that cool conditions during the pupal stage frequently induce darkening of pigment in the imago, while a warm temperature brightens the colours of the perfect insect. For example, in many species of butterfly that are double-brooded, the spring brood emerging from the wintering pupae are more darkly coloured than the summer brood, but if the pupae producing the latter be subjected artificially to cold conditions, the winter form of imago results. It is usually impossible, however, to produce the summer form of the species from wintering pupae by artificial heat. From this A. Weismann argued that the more stable winter form must be regarded as representing the ancestral race of the species. Further examples of this “seasonal dimorphism” are afforded by many tropical butterflies which possess a darker “wet-season” and a brighter “dry-season” generation. So different in appearance are often these two seasonal forms that before their true relationship was worked out they had been naturally regarded as independent species. The darkening of wing-patterns in many species of Lepidoptera has been carefully studied in our own British fauna. Melanic or melanochroic varieties are specially characteristic of western and hilly regions, and some remarkable dark races (fig. 43) of certain geometrid moths have arisen and become perpetuated in the manufacturing districts of the north of England. The production of these melanic forms is explained by J. W. Tutt and others as largely due to the action of natural selection, the damp and sooty conditions of the districts where they occur rendering unusually dark the surfaces—such as rocks, tree-trunks and palings—on which moths habitually rest and so favouring the survival of dark, and the elimination of pale varieties, as the latter would be conspicuous to their enemies. Breeding experiments have shown that these melanic races are sometimes “dominant” to their parent-stock. An evidently adaptive connexion can be frequently traced between the resting situation and attitude of the insect and the colour and pattern of its wings. Moths that rest with the hindwings concealed beneath the forewings (fig. 34, f) often have the latter dull and mottled, while the former are sometimes highly coloured. Butterflies whose normal resting attitude is with the wings closed vertically over the back (fig. 63) so that the under surface is exposed to view, often have this under surface mottled and inconspicuous although the upper surface may be bright with flashing colours. Various degrees of such “protective resemblance” can be traced, culminating in the wonderful “imitation” of its surroundings shown by the tropical “leaf-butterflies” (Kallima), the under surfaces of whose wings, though varying greatly, yet form in every case a perfect representation of a leaf in some stage or other of decay, the butterfly at the same time disposing of the rest of its body so as to bear out the deception. How this is effected is best told by A. R. Wallace, who was the first to observe it, in his work The Malay Archipelago:—

“The habit of the species is always to rest on a twig and among dead or dried leaves, and in this position, with the wings closely pressed together, their outline is exactly that of a moderately sized leaf slightly curved or shrivelled. The tail of the hindwings forms a perfect stalk and touches the stick, while the insect is supported by the middle pair of legs, which are not noticed among the twigs and fibres that surround it. The head and antennae are drawn back between the wings so as to be quite concealed, and there is a little notch hollowed out at the very base of the wings, which allows the head to be retracted sufficiently.”

But the British Vanessids often rest on a bare patch of ground with the brightly coloured upper surface of their wings fully exposed to view, and even make themselves still more conspicuous by fanning their wings up and down. Some genera and families of Lepidoptera, believed to secrete noxious juices that render them distasteful, are adorned with the staring contrasts of colour usually regarded as “warning,” while other genera, belonging to harmless families sought for as food by birds and lizards, are believed to obtain complete or partial immunity by their likeness to the conspicuous noxious groups. (See Mimicry.)

Fig. 17.—Vapourer Moth (Ocneria detrita). S. Europe. A, Male; B, Female.

Sexual dimorphism is frequent among the Lepidoptera. In many families this takes the form of more elaborate feelers in the male than in the female moth. Such complex feelers (fig. 2) bear numerous sensory (olfactory) nerve-endings and give to the males that possess them a wonderful power of discovering their mates. A single captive female of the Endromidae or Lasiocampidae often causes hundreds of males of her species to “assemble” around her prison, and this character is made use of by collectors who want to secure specimens. In many butterflies—notably the “blues” (Lycaenidae)—the male is brilliant while the female is dull, and in other groups (the Danainae for example) he is provided with scent-producing glands believed to be “alluring” in function. The apparent evidence given by the sexual differences among the Lepidoptera in favour of C. Darwin’s theory of sexual selection finds no support from a study of their habits. The male indeed usually seeks the female, but she appears to exercise no choice in pairing. In some cases the female is attracted by the male, and here a modified form of sexual selection appears to be operative. The ghost swift moth (Hepialus humuli) affords a curious and interesting example of this condition, the female showing the usual brown and buff coloration of her genus, while the wings of the male are pure white, rendering him conspicuous in the dusky evening when pairing takes place. But in the northernmost