This page has been proofread, but needs to be validated.
624  
LIGHT
[VELOCITY


The most elaborate determination yet made by Fizeau’s method was that of Cornu. The station of observation was at the Paris Observatory. The distant reflector, a telescope with a reflector at its focus, was at Montlhéry, distant 22,910 metres from the toothed wheel. Of the wheels most used one had Cornu. 150 teeth, and was 35 millimetres in diameter; the other had 200 teeth, with a diameter of 45 mm. The highest speed attained was about 900 revolutions per second. At this speed, 135,000 (or 180,000) teeth would pass per second, and about 20 (or 28) would pass while the light was going and coming. But the actual speed attained was generally less than this. The definitive result derived by Cornu from the entire series of experiments was 300,400 kilometres per second. Further details of this work need not be set forth because the method is in several ways deficient in precision. The eclipses and subsequent reappearances of the light taking place gradually, it is impossible to fix with entire precision upon the moment of complete eclipse. The speed of the wheel is continually varying, and it is impossible to determine with precision what it was at the instant of an eclipse.

The defect would be lessened were the speed of the toothed wheel placed under control of the observer who, by action in one direction or the other, could continually check or accelerate it, so as to keep the return point of light at the required phase of brightness. If the phase of complete extinction is chosen for this purpose a definite result cannot be reached; but by choosing the moment when the light is of a certain definite brightness, before or after an eclipse, the observer will know at each instant whether the speed should be accelerated or retarded, and can act accordingly. The nearly constant speed through as long a period as is deemed necessary would then be found by dividing the entire number of revolutions of the wheel by the time through which the light was kept constant. But even with these improvements, which were not actually tried by Cornu, the estimate of the brightness on which the whole result depends would necessarily be uncertain. The outcome is that, although Cornu’s discussion of his experiments is a model in the care taken to determine so far as practicable every source of error, his definitive result is shown by other determinations to have been too great by about 1/1000 part of its whole amount.

An important improvement on the Fizeau method was made in 1880 by James Young and George Forbes at Glasgow. This consisted in using two distant reflectors which were placed nearly in the same straight line, and at unequal distances. The ratio of the distances was nearly 12 : 13. The phase Young and Forbes. observed was not that of complete extinction of either light, but that when the two lights appeared equal in intensity. But it does not appear that the very necessary device of placing the speed of the toothed wheel under control of the observer was adopted. The accordance between the different measures was far from satisfactory, and it will suffice to mention the result which was

Velocity in vacuo = 301,382 km. per second.

These experimenters also found a difference of 2% between the speed of red and blue light, a result which can only be attributed to some unexplained source of error.

The Foucault system is much more precise, because it rests upon the measurement of an angle, which can be made with great precision.

Fig. 3.

The vital appliance is a rapidly revolving mirror. Let AB (fig. 3) be a section of this mirror, which we shall first suppose at rest. A ray of light LM emanating from a source at L, is reflected in the direction MQR to a distant mirror R, from which it is perpendicularly reflected back upon its original course. Foucault. This mirror R should be slightly concave, with the centre of curvature near M, so that the ray shall always be reflected back to M on whatever point of R it may fall. Conceiving the revolving mirror M as at rest, the return ray will after three reflections, at M, R and M again, be returned along its original course to the point L from which it emanated. An important point is that the return ray will always follow the fixed line ML no matter what the position of the movable mirror M, provided there is a distant reflector to send the ray back. Now, suppose that, while the ray is going and coming, the mirror M, being set in revolution, has turned from the position in which the ray was reflected to that shown by the dotted line. If α be the angle through which the surface has turned, the course of the return ray, after reflection, will then deviate from ML by the angle 2α, and so be thrown to a point E, such that the angle LME = 2α. If the mirror is in rapid rotation the ray reflected from it will strike the distant mirror as a series of flashes, each formed by the light reflected when the mirror was in the position AB. If the speed of rotation is uniform, the reflected rays from the successive flashes while the mirror is in the dotted position will thus all follow the same direction ME after their second reflection from the mirror. If the motion is sufficiently rapid an eye observing the reflected ray will see the flashes as an invariable point of light so long as the speed of revolution remains constant. The time required for the light to go and come is then equal to that required by the mirror to turn through half the angle LME, which is therefore to be measured. In practice it is necessary on this system, as well as on that of Fizeau, to condense the light by means of a lens, Q, so placed that L and R shall be at conjugate foci. The position of the lens may be either between the luminous point L and the mirror M, or between M and R, the latter being the only one shown in the figure. This position has the advantage that more light can be concentrated, but it has the disadvantage that, with a given magnifying power, the effect of atmospheric undulation, when the concave reflector is situated at a great distance, is increased in the ratio of the focal length of the lens to the distance LM from the light to the mirror. To state the fact in another form, the amplitude of the disturbances produced by the air in linear measure are proportional to the focal distance of the lens, while the magnification required increases in the inverse ratio of the distance LM. Another difficulty associated with the Foucault system in the form in which its originator used it is that if the axis of the mirror is at right angles to the course of the ray, the light from the source L will be flashed directly into the eye of the observer, on every passage of the revolving mirror through the position in which its normal bisects the two courses of the ray. This may be avoided by inclining the axis of the mirror.

In Foucault’s determination the measures were not made upon a luminous point, but upon a reticule, the image of which could not be seen unless the reflector was quite near the revolving mirror. Indeed the whole apparatus was contained in his laboratory. The effective distance was increased by using several reflectors; but the entire course of the ray measured only 20 metres. The result reached by Foucault for the velocity of light was 298,000 kilometres per second.

The first marked advance on Foucault’s determination was made by Albert A. Michelson, then a young officer on duty at the U.S. Naval Academy, Annapolis. The improvement consisted in using the image of a slit through which the rays of the sun passed after reflection from a heliostat. In this way Michelson. it was found possible to see the image of the slit reflected from the distant mirror when the latter was nearly 600 metres from the station of observation. The essentials of the arrangement are those we have used in fig. 3, L being the slit. It will be seen that the revolving mirror is here interposed between the lens and its focus. It was driven by an air turbine, the blast of which was under the control of the observer, so that it could be kept at any required speed. The speed was determined by the vibrations of two tuning forks. One of these was an electric fork, making about 120 vibrations per second, with which the mirror was kept in unison by a system of rays reflected from it and the fork. The speed of this fork was determined by comparison with a freely vibrating fork from time to time. The speed of the revolving mirror was generally about 275 turns per second, and the deflection of the image of the slit about 112.5 mm. The mean result of nearly 100 fairly accordant determinations was:—

Velocity of light in air299,828 km. per sec.
Reduction to a vacuum+82
Velocity of light in a vacuum  299,910 ± 50

While this work was in progress Simon Newcomb obtained the official support necessary to make a determination on a yet larger scale. The most important modifications made in the Foucault-Michelson system were the following:—Newcomb.

1. Placing the reflector at the much greater distance of several kilometres.

2. In order that the disturbances of the return image due to the passage of the ray through more than 7 km. of air might be reduced to a minimum, an ordinary telescope of the “broken back” form was used to send the ray to the revolving mirror.

3. The speed of the mirror was, as in Michelson’s experiments, completely under control of the observer, so that by drawing one or the other of two cords held in the hand the return image could be kept in any required position. In making each measure the receiving telescope hereafter described was placed in a fixed position and during the “run” the image was kept as nearly as practicable upon a vertical thread passing through its focus. A “run” generally lasted about two minutes, during which time the mirror commonly made between 25,000 and 30,000 revolutions. The speed per second was found by dividing the entire number of revolutions by the number of seconds in the “run.” The extreme deviations between the times of transmission of the light, as derived from any two runs, never approached to the thousandth part of its entire amount. The average deviation from the mean was indeed less than 1/5000 part of the whole.

Fig. 4.

To avoid the injurious effect of the directly reflected flash, as well as to render unnecessary a comparison between the directions of the outgoing and the return ray, a second telescope, turning horizontally on an axis coincident with that of the revolving mirror, was used to receive the return ray after reflection. This required the use of an elongated mirror of which the upper half of the surface reflected the outgoing ray, and the lower other half received and reflected the ray on its return. On this system it was not necessary to incline the mirror in order to avoid the direct reflection of the return ray. The greatest advantage of this system was that the revolving mirror could be turned in either direction without break