This page has been proofread, but needs to be validated.
662
LIGHTING
[ELECTRIC


difference, in this case is less than unity. For silent arcs Blondel found power-factors lying between 0.88 and 0.95, and for hissing ones, values such as 0.70. Ayrton and Sumpner stated that the power-factor may be as low as 0.5. Joubert, as far back as 1881, noticed the deformation which the alternating-current arc impresses upon the electromotive force curve of an alternator, giving an open circuit a simple harmonic variation of electromotive force. Tobey and Walbridge in 1890 gave the results of a number of observations taken with commercial forms of alternating-current arc lamps, in which the same deformation was apparent. Blondel in 1896 came to the conclusion that with the same alternator we can produce carbon P.D. curves of very varied character, according to the material of the core, the length of the arc, and the inductance of the circuit. Hard carbons gave a P.D. curve with a flat top even when worked on a low inductance alternator.

The periodic variation of light in the alternating-current arc has also been the subject of inquiry. H. Görges in 1895 at Berlin applied a stroboscopic method to steady the variations of illuminating power. Fleming and Petavel employed a similar arrangement, driving the stroboscopic disk by a synchronous motor (Phil. Mag., 1896, 41). The light passing through slits of the disk was selected in one particular period of the phase, and by means of a lens could be taken from any desired portion of the arc or the incandescent carbons. The light so selected was measured relatively to the mean value of the horizontal light emitted by the arc, and accidental variations were thus eliminated. They found that the light from any part is periodic, but owing to the slow cooling of the carbons never quite zero, the minimum value happening a little later than the zero value of the current. The light emitted by a particular carbon when it is the negative, does not reach such a large maximum value as when it is the positive. The same observers made experiments which seemed to show that for a given expenditure of power in the arc the alternating current arc in general gives less mean spherical candle-power than the continuous current one.

Fig. 7.

The effect of the wave form on the efficiency of the alternating-current arc has engaged the attention of many workers. Rössler and Wedding in 1894 gave an account of experiments with alternating-current arcs produced by alternators having electromotive force curves of very different wave forms, and they stated that the efficiency or mean spherical candle-power per watt expended in the arc was greatest for the flattest of the three wave forms by nearly 50%. Burnie in 1897 gave the results of experiments of the same kind. His conclusion was, that since the light of the arc is a function of the temperature, that wave form of current is most efficient which maintains the temperature most uniformly throughout the half period. Hence, generally, if the current rises to a high value soon after its commencement, and is preserved at that value, or nearly at that value, during the phase, the efficiency of the arc will be greater when the current curve is more pointed or peaked. An important contribution to our knowledge concerning alternating-current arc phenomena was made in 1899 by W. Duddell and E. W. Marchant, in a paper containing valuable results obtained with their improved oscillograph.[1] They studied the behaviour of the alternating-current arc when formed both with solid carbons, with cored carbons, and with carbon and metal rods. They found that with solid carbons the arc P.D. curve is always square-shouldered and begins with a peak, as shown in fig. 7 (a), but with cored carbons it is more sinusoidal. Its shape depends on the total resistance in the circuit, but is almost independent of the type of alternator, whereas the current wave form is largely dependent on the machine used, and on the nature and amount of the impedance in the circuit; hence the importance of selecting a suitable alternator for operating alternating-current arcs. The same observers drew attention to the remarkable fact that if the arc is formed between a carbon and metal rod, say a zinc rod, there is a complete interruption of the current over half a period corresponding to that time during which the carbon is positive; this suggests that the rapid cooling of the metal facilitates the flow of the current from it, and resists the flow of current to it. The dotted curve in fig. 7 (b) shows the current curve form in the case of a copper rod. By the use of the oscillograph Duddell and Marchant showed that the hissing continuous-current arc is intermittent, and that the current is oscillatory and may have a frequency of 1000 per second. They also showed that enclosing the arc increases the arc reaction, the front peak of the potential curve becoming more marked and the power-factor of the arc reduced.

Fig. 8.—Enclosed Arc Lamp.

If a continuous-current electric arc is formed in the open air with a positive carbon having a diameter of about 15 millimetres, and a negative carbon having a diameter of about 9 millimetres, and if a current of 10 amperes is employed, the potential difference between the carbons is generally Enclosed arc lamps. from 40 to 50 volts. Such a lamp is therefore called a 500–watt arc. Under these conditions the carbons each burn away at the rate of about 1 in. per hour, actual combustion taking place in the air which gains access to the highly-heated crater and negative tip; hence the most obvious means of preventing this disappearance is to enclose the arc in an air-tight glass vessel. Such a device was tried very early in the history of arc lighting. The result of using a completely air-tight globe, however, is that the contained oxygen is removed by combustion with the carbon, and carbon vapour or hydrocarbon compounds diffuse through the enclosed space and deposit themselves on the cool sides of the glass, which is thereby obscured. It was, however, shown by L. B. Marks (Electrician 31, p. 502, and 38, p. 646) in 1893, that if the arc is an arc formed with a small current and relatively high voltage, namely, 80 to 85 volts, it is possible to admit air in such small amount that though the rate of combustion of the carbons is reduced, yet the air destroys by oxidation the carbon vapour escaping from the arc. An arc lamp operated in this way is called an enclosed arc lamp (fig. 8). The top of the enclosing bulb is closed by a gas check plug which admits through a small hole a limited supply of air. The peculiarity of an enclosed arc lamp operated with a continuous current is that the carbons do not burn to a crater on the positive, and a sharp tip or mushroom on the negative, but preserve nearly flat surfaces. This feature affects the distribution of the light. The illuminating curve of the enclosed arc, therefore, has not such a strongly marked maximum value as that of the open arc, but on the other hand the true arc or column of incandescent carbon vapour is less steady in position, wandering round from place to place on the surface of the carbons. As a compensation for this defect, the combustion of the carbons per hour in commercial forms of enclosed arc lamps is about one-twentieth part of that of an open arc lamp taking the same current.

It was shown by Fleming in 1890 that the column of incandescent carbon vapour constituting the true arc possesses a unilateral conductivity (Proc. Roy. Inst. 13, p. 47). If a third carbon is dipped into the arc so as to constitute a third pole, and if a small voltaic battery of a few cells, with a galvanometer in circuit, is connected in between the middle pole and the negative carbon, it is found that when the negative pole of the battery is in connexion with the negative carbon the galvanometer indicates a current, but does not when the positive pole of the battery is in connexion with the negative carbon of the arc.

Turning next to the consideration of the electric arc as a source of light, we have already noticed that the illuminating power in different directions is not the same. If we imagine an electric arc, formed between a pair of vertical carbons, to be placed in the centre of a hollow The arc
as an illuminant.
sphere painted white on the interior, then it would be found that the various zones of this sphere are unequally illuminated. If the points in which the carbons when prolonged would intercept the sphere are called the poles, and the line where the horizontal plane through the arc would intercept the sphere

  1. Journ. Inst. Elec. Eng. 28, p. 1. The authors of this paper give numerous instructive curves taken with the oscillograph, showing the form of the arc P.D. and current curves for a great variety of alternating-current arcs.