This page has been proofread, but needs to be validated.
  
MINING
537


but are now practically abandoned in both Great Britain and the United States, and few remain in any of the mining regions of the world. Their first cost is great and they are dangerous for new men, as they require constant alertness, presence of mind, and a certain knack in using them. See Trans. Inst. Min. and Met. xi. 334, 345, 380, &c.; also Eng. and Min. Jour. (April 4, 1903), pp. 517 and 518.

Surface Handling, Storage and Shipment of Minerals.—To mine ore or coal at minimum cost it is necessary to work the mine plant at nearly or quite its full capacity and to avoid interruption and delays. When the mineral is transported by rail or water to concentration or metallurgical works for treatment, or to near or distant markets for sale, provision must be made for the economical loading of railway wagons or vessels, and for the temporary storage of the mineral product. For short periods the mineral may remain in the mine cars, or may be loaded into railway wagons held at the mine for this purpose. Cars, however, are too valuable to be used in this way for more than a few hours, and it is usual to erect large storage bins at the mine, at concentration works and metallurgical establishments, in which the mineral may be stored, permitting cars, wagons and vessels to be quickly emptied or loaded. In mining regions where water transportation is interrupted during certain months of the year the mineral must be stored underground, or in great stock-piles on the surface. In coal mining the market demand varies in different seasons, and surface storage is sometimes necessary to permit regular work at the mines. For coal, iron ore and other cheap minerals, mechanical handling by many different methods is used in loading and unloading railway wagons and vessels, and in forming the stock-piles and reloading the mineral therefrom. (See Conveyor and Docks; also G. F. Zimmer, Mechanical Handling of Materials, and Engineering Magazine, xiv. 275, xx. 157 and xxi. 657.)

Mine Drainage.—A mine which has been opened by an adit tunnel or drift drains itself, so far as the workings above the adit level are concerned. In many mining regions long tunnels have been driven at great expense to secure natural drainage. Under modern mining conditions drainage tunnels have lost much of their former importance. Taking into account the risk attending all mining operations, which make necessary large interest and amortization charges on the cost of a tunnel, it will in most cases be advisable to raise the water to the surface by mechanical means. Drainage channels are provided, usually along the main haulage roads, by which the water flows to a sump excavated at the pump shaft. In driving mine passages that are to be used for drainage, care is taken to maintain sufficient gradient. Siphons are sometimes used to carry the water over an undulating grade and thereby save the expense of a deep rock cutting. As the larger part of the water in a mine comes from the surface, the cost of drainage may be reduced by intercepting this surface water, and collecting it at convenient points in the pump shaft from which it may be raised at less cost than if permitted to go to the bottom. Water may be raised from mines by buckets, tanks or pumps. Wooden or steel buckets, holding from 35 to 200 gallons, are employed only for temporary or auxiliary service or for small quantities of water in shallow shafts. Tanks operated by the main hoisting engines, and of capacities up to 1500 gallons or more, are applicable under several conditions: (1) When the shaft is deep, the quantity of water insufficient to keep a pump in regular operation, and the hoisting engine not constantly employed in raising mineral, the tank is worked at intervals, being attached temporarily to the hoisting rope in place of the cage. (2) For raising large volumes of water from deep shafts pairs of tanks are operated in balance in special shaft compartments by their own hoisting engine. With an efficient engine the cost per gallon of water is often less than for pumping. (3) For clearing flooded mines. As the water level falls the tanks readily follow it while at work, whereas pumps must be lowered to new positions to keep within suction distance. Self-acting tanks are occasionally built underneath the platforms of hoisting cages. Mine pumps are of two classes: (1) those in which the driving engine is on the surface and operates the pumps by a long line of rods passing down the shaft, commonly known as the Cornish system; (2) direct-acting pumps, in which the engine and pumping cylinders form a single unit, placed close to the point underground from which the water is to be raised. Cornish pumps are the oldest of the machines for draining mines; in fact, one of the earliest applications of the old Woolf and Newcomen engines in the 18th century was to pumps for deep mines. The engine works a massive counter-balanced walking-beam from which is suspended in the shaft a long wooden (or steel) rod, made in sections and spliced together. Attached to the rod by offsets are one or more plunger or bucket pumps, set at intervals in the shaft. All work simultaneously, each raising the water to a tank or sump above, whence it is taken by the next pump of the system, and finally discharged at the surface. The individual pumps are placed several hundred feet apart, so that a series is required for a deep shaft. The speed is slow—from 4 to 10 strokes per minute—but the larger sizes, up to 24 in. or more in diameter by 10 or 12 ft. stroke, are capable of raising millions of gallons per day. Cornish pumps are economical in running expenses, provided the driving engine is of proper design and the disadvantages incurred in conveying steam underground are avoided. Their first cost, however, is high and the cumbersome parts occupy much space in the shaft; Direct-acting pumps, first introduced (1841) by an American, Henry R. Worthington, are made of many different designs. Typically they are steam pumps, the steam and water cylinders being set tandem on the same bed frame, generally without fly-wheel or other rotary parts; they may be single cylinder or duplex, simple, compound or triple expansion, and having a higher speed of stroke are smaller in all their parts than Cornish pumps. For high heads the water cylinders, valves and valve chambers are specially constructed to withstand heavy pressures, water being sometimes raised in a single lift to heights of more than 2000 ft. Condensers are always required for underground pumps. Sinking pumps, designed for use in shafts in process of sinking, are suspended by wire ropes so as to be raised before blasting and promptly lowered again to resume pumping. Electrically driven pumps, now widely used, are convenient and economical. Mine pumps of ordinary forms may be operated by compressed air, and air-lift pumps have been successfully employed. Hydraulic pumping engines, while not differing essentially from steam pumps, must have specially designed valves in the power cylinder on account of the incompressibility of water. They can be used only when a supply of water under sufficient pressure is available for power. Centrifugal pumps, constructed with several stages or sets of vanes, and suitable for high lifts, have been introduced for mine service. When mine water is acid the working parts of the pump must be lined with or made of bronze or other non-corrosive material; or the acid may be neutralized by adding lime in the sump.

Ventilation.—The air of a mine is vitiated by the presence of large numbers of men and animals and of numerous lights, each of which may consume as much air as a number of men. In mining operations explosives are used on a large scale and the powder gases contain large quantities of the very poisonous gas, carbon monoxide, a small percentage of which may cause death, and even a minute percentage of which in the air will seriously affect the health. In addition to these sources of contamination the air of the mine is frequently charged with gas' issuing from the rocks or from the mineral deposit. For example, carbon dioxide occurs in some mines, and hydrogen sulphide, which is a poisonous gas, in others. In coal-mines we have to deal with “fire-damp” or marsh gas, and with inflammable coal dust, which form explosive mixtures with air and frequently lead to disastrous explosions resulting in great loss of life. The gases produced by such fire-damp or dust explosions contain carbon dioxide and carbon monoxide in large proportion, and the majority of the deaths from such explosions are due to this “after-damp” rather than to the