This page needs to be proofread.
TECHNIQUE]
PHOTOGRAPHY
491

development is conducted in a flat dish, sometimes the solution is poured on the plate.[1] The unreduced salts are eliminated by either cyanide of potassium or sodium hyposulphite. Intensity may be given to the image, if requisite, either before or after the “fixing” operation. Where resort is had to ferrous oxalate development, the developer is made in one of two ways—(1) by saturating a saturated solution of neutral potassium oxalate with ferrous oxalate, and adding an equal volume of a solution (10 grains to 1 oz. of water) of potassium bromide to restrain the action, or (2) by mixing, according to Eder's plan, 3 volumes by measure of a saturated solution of the potassium oxalate with 1 volume by measure of a saturated solution of ferrous sulphate, and adding to the ferrous oxalate solution thus obtained an equal bulk of the above solution of potassium bromide. The development is conducted in precisely the same manner as indicated above, and the image is fixed by one of the same agents.

Gelatin Emulsion Process.—The facility with which silver bromide emulsion could be prepared in collodion had turned investigation into substitutes for it. As early as September 1871 Dr R. L. Maddox had tried emulsifying the silver salt in gelatin, and had produced negatives of rare excellence. In November 1873 J. King described a similar process, getting rid of the soluble salts by washing. Efforts had also been made in this direction by J. Burgess in July 1873. R. Kennett in 1874 may be said to have been the first to put forward the gelatin emulsion process in a practical and workable form, as he then published a formula which gave good and quick results. It was not till 1878, however, that the great capabilities of silver bromide when held in suspension by gelatin were fairly known; in March of that year C. Bennett showed that by keeping the gelatin solution liquid at a low temperature for as long as seven days extraordinary rapidity was conferred on the sensitive salt. The molecular condition of the silver bromide seemed to be altered, and to be amenable to a far more powerful developer than had hitherto been dreamt of In 1874 J. S. Stas had shown that various modifications of silver bromide and chloride were possible, and it seemed that the green molecular condition (one of those noted by Stas) of the bromide was attained by prolonged warming. It may be said that the advent of rapid plates was 1878, and that the full credit of this discovery should be allotted to C. Bennett. Both Kennett and Bennett got rid of the soluble salts from the emulsion by washing; and in order to attain success it was requisite that the bromide should be in excess of that necessary to combine with the silver nitrate used to form the emulsion. In June 1879 Abney showed that a good emulsion might be formed by precipitating a silver bromide by dropping a solution of a soluble bromide into a dilute solution of silver nitrate. The supernatant liquid was decanted, and after two or three washings with water the precipitate was mixed with the proper amount of gelatin. D. B. van Monckhoven of Ghent, in experimenting with this process, hit upon the plan of obtaining the emulsion by acting on silver carbonate with hydrobromic acid, which left no soluble salts to be extracted. He further, in August 1879, announced that he had obtained great rapidity by adding to the bromide emulsion a certain quantity of ammonia. This addition rapidly altered the silver bromide from its ordinary state to the green molecular condition referred to above. At this point we have the branching off of the gelatin emulsion process into two great divisions, viz. that in which rapidity was gained by long-continued heating, and the other in which it was gained by the use of ammonia—a subdivision which is maintained to the present day. Opinions as to the merits of the two methods are much divided, some maintaining that the quality of the heated emulsion is better than that produced by alkalinity, and vice versa. We may mention that in 1881 Dr A. Herschel introduced a plan for making an alcoholic gelatin emulsion with the idea of inducing rapid drying of the plates, and in the same year H. W. Vogel of Berlin introduced a method of combining gelatin and pyroxylin together by means of a solvent which acted on the gelatin and allowed the addition of alcohol in order to dissolve the pyroxylin This “collodio-gelatin emulsion” was only a short lived process, which is not surprising, since its preparation Involved the inhalation of the fumes of acetic acid.

The warming process introduced by Bennett was soon superseded. Colonel Stuart Wortley in 1879 announced that, by raising the temperature of the vessel in which the emulsion was stewed to 150° F., instead of days being required to give the desired sensibility only a few hours were necessary. A further advance was made by boiling the emulsion, first practised, we believe, by G. Mansfield in 1879. Another improvement was effected by W. B. Bolton by emulsifying the silver salt in a small quantity of gelatin and then raising the emulsion to boiling point, boiling it for from half an hour to an hour, when extreme rapidity was attained. Many minor improvements in this process have been made from time to time. It may be useful to give an idea of the relative rapidities of the various processes we have described.

Daguerreotype, originally half an hour’s exposure
Calotype 2 or 3 minutes
Collodion 10 seconds
Collodion emulsion 15 seconds
Rapid gelatin emulsion 1/15th second

Technique of Photography

Gelatin Emulsions.

The following is an outline of two representative processes. All operations should be conducted in light which can act but very slightly on the sensitive salts employed, and this is more necessary with this process than with others on account of the extreme ease with which the equilibrium of the molecules is upset in giving rise to the molecule which is develop able. The light to work with is gaslight or candlelight passing through a sheet of Chance's stained red glass backed by orange paper. Stained red glass allows but few chemically effective rays to pass through it, whilst the orange paper diffuses the light. If daylight be employed, it is as well to have a double thickness of orange paper. The following should be weighed out:—

1. Potassium iodide 5 grs.
2. Potassium bromide 135 "
3. Nelson's No. I photographic gelatin 30 "
4. Silver nitrate 175 "
5. Autotype or other hard gelatin 100 "
Nelson's No. 1 gelatin 100 "

Nos. 3 and 5 are rapidly covered with water or washed for a few seconds under the tap to get rid of any dust. No. 2 is dissolved in 1/2 oz. of water, and) a little tincture of iodine added till it assumes a light sherry colour. No. 1 is dissolved In 60 minims of water. No. 4 is dissolved in 1/2 oz. of water, and No. 3 is allowed to swell up in 1 oz. of water, and is then dissolved by heat. All the flasks containing these solutions are placed in water at 150° F. and carried into the “dark room,” as the orange-lighted chamber is ordinarily called; Nos. 3 and 4 are then mixed together in a jar or flask, and No 2 added drop by drop till half its bulk is gone, when No. 1 is added to the remainder, and the double solution is dropped in as before. When all is added there ought to be formed an emulsion which is very ruddy when examined by gaslight, or orange by daylight. The flask containing the emulsion is next placed in boiling water, which is kept in a state of ebullition for about three-quarters of an hour. It is then read, when the contents of the flask have cooled down to about 100° F., for the addition of No. 5, which should in the interval be placed in 2 oz. of water to swell and finally be dissolved. The gelatin emulsion thus formed is placed in a cool place to set, after which it is turned into a piece of coarse canvas or mosquito netting made into a bag. By squeezing, threads of gelatin containing the sensitive salt can be made to fall into cold water; by this means the soluble salts are extracted. This is readily done in two or three hours by frequently changing the water, or by allowing running water to flow over the emulsion-threads. The gelatin is next drained by straining canvas over a jar and turning out the threads on to it, after which It is placed in a flask, an warmed till It dissolves, hall an ounce of alcohol being added. Finally it is filtered through chamois leather or swansdown calico. In this state it is ready for the plates.

The other method of forming the emulsion is with ammonia. The same quantities as before are weighed out, but the solutions of Nos. 2 and 3 are first mixed together and No. 4 is dissolved in 1 oz. of water, and strong ammonia of specific gravity ⋅880 added to it till the oxide first precipitated is just redissolved This solution is then dropped into Nos. 2 and 3 as previously described, and finally No. 1 is added. In this case no boiling is required; but to secure rapidity it is as well that the emulsion should be kept an hour at a temperature of about 90° F., after which half the total quantity of No. 5 is added. When set the emulsion is washed, drained, and redissolved as before; but in order to give tenacity


  1. For further details the reader is referred to Instruction in Photography, 11th ed., p. 362.