This page has been proofread, but needs to be validated.
PATHOLOGY]
PLANTS
757


agencies are very efficient in dissemination. The part played by man also counts for much. Gardeners and farm labourers convey spores from one bed or field to another, carted soil, manure, &c., may abound in spores of Smuts, Fusarium, Polypores and in sclerotia; and articles through the post and so forth often carry infective spores. Every time a carpenter saws fresh timber with a saw recently put through wood attacked with dry-rot, he risks infecting it with the Fungus; and similarly in pruning, in propagating by cuttings, &c.

The annual losses due to epidemic plant diseases attain proportions not easily estimated. As regards money value alone the following figures may serve in illustration. In 1882 the United States was calculated to have lost £40,000,000 to £60,000,000 from insect and other pests. The wheat-rust costs Australia £2,000,000 to £3,000,000 annually, and in 1891 alone the loss which Prussia suffered from grain-rusts was estimated at £20,000,000 sterling.

The terrible losses sustained by whole communities of farmers, planters, foresters, &c., from plant diseases have naturally stimulated the search for remedies, but even now the search is too often conducted in the spirit of the believer in quack medicines, although the agricultural world is awakening to the fact that before any measures likely to be successful can be attempted, the whole chain of causation of the disease must be investigated. Experience with epidemics, dearly bought in the past, has shown that one fruitful cause is the laying open to the inroads of some Fungus or insect, hitherto leading a quiet endemic life in the fields and forests, large tracts of its special food, along which it may range rampant without check to its dispersal, nutrition and reproduction. Numerous wild hypotheses as to changes in the constitution of the host-plant, leading to supposed vulnerability previously non-existent, would probably never have seen the light had the full significance of the truth been grasped that an epidemic results when the external factors favour a parasite somewhat more than they do the host. It may be that in particular cases particular modes of cultivation disfavour the host, or that the soil, climate or seasons do so; but overwhelming evidence exists to show that the principal causes of epidemics reside in circumstances which favour the spread, nutrition and reproduction of the pest, and the lesson to be learnt is that precautions against the establishment of such favouring conditions must be sought. Nevertheless, epidemics occur, and practical measures are devised to meet the various cases and to check the ravages already begun. The procedure consists in most cases in spraying the affected plants with poisonous solutions or emulsions, or in dusting them with fungicidal or insecticidal powders, or applying the fumes of lethal gases. For the composition of the numerous liquids and powders special works must be consulted, but the following principles apply generally. The poison must not be strong enough to injure the roots, leaves, &c., of the host-plant, or allowed to act long enough to bring about such injury. Care and intelligence are especially needful with certain insecticides such as poisonous gases, or the operators may suffer. It is worse than useless to apply drastic remedies if the main facts of the life-history of the pest are not known; e.g. the application of ordinary antiseptic powders to leaves inside which a Fungus, such as a Uredo or Ustilago, is growing can only result in failure, and similarly if tobacco fumes, for instance, are applied when the insects concerned are hibernating in the ground beneath. Such applications at the moment when spores are germinating on the leaves, e.g. Peronospora, or to the young mycelia of epiphytic parasites, e.g. Erysiphe, or the steeping in hot water of thoroughly ripe hard grains to which spores are attached, e.g. Ustilago, and filling a greenhouse with hydrocyanic acid gas when young insects are commencing their ravages, e.g. Red-spider—all these and similar procedures timed to catch the pest at a vulnerable stage are intelligent and profitable prophylactic measures, as has been repeatedly shown. Numerous special methods of preventing the spread of Fungi, or the migrations of insects, or of trapping various animals; of leaving infested ground fallow, or of growing another crop useless to the pest, &c., are also to be found in the practical treatises. More indirect methods, such as the grafting of less resistant scions on more vigorous stocks, of raising special late or early varieties by crossing or selection, and so on, have also met with success; but it must be understood that “resistant” in such cases usually means that some peculiarity of quick growth, early ripening or other life-feature in the plant is for the time being taken advantage of. Among the most interesting modern means of waging war against epidemic pests is that of introducing other epidemics among the pests themselves—e.g. the infection of rats and mice with disease bacilli, or of locusts with insect-killing Fungi, and signs of the successful carrying out of such measures are not wanting. That the encouragement of insectivorous birds has been profitable is well established, and it is equally well-known that their destruction may lead to disastrous insect plagues.

Diseases and Symptoms—The symptoms of plant diseases are, as already said, apt to be very general in their nature, and are sometimes so vaguely defined that little can be learned from them as to the causes at work. We may often distinguish between primary symptoms and secondary or subordinate symptoms, but for the purposes of classification in an article of this scope we shall only attempt to group the various cases under the more obvious signs of disease exhibited.

1. Discolorations are among the commonest of all signs that a plant is “sickly” or diseased. The principal symptom may show itself in general pallor, including all cases where the normal healthy green hue is replaced by a sickly yellowish hue indicating that the chlorophyll apparatus is deficient. It may be due to insufficient illumination (Etiolation), as seen in geraniums kept in too shaded a situation, and is then accompanied by soft tissues, elongation of internodes, leaves usually reduced in size, &c. The laying of wheat is a particular case. False etiolation may occur from too low a temperature, often seen in young wheat in cold springs. Cases of pallor due to too intense illumination and destruction of chlorophyll must also be distinguished. Chlorosis is a form of pallor where the chlorophyll remains in abeyance owing to a want of iron, and can be cured by adding ferrous salts. Lack of other ingredients may also induce chlorotic conditions. Yellowing is a common sign of water-logged roots, and if accompanied by wilting may be due to drought. Over-transpiration in bright wintry weather, when the roots are not absorbing, often results in yellowing. In other cases the presence of insects, Fungi or poisons at the roots may be looked for. Albinism, with which variegated foliage may be considered, concerns a different set of causes, still obscure, and usually regarded as internal, though experiments go to show that some variegation's are infectious.

2. Spotted Leaves, &c.—Discoloured spots or patches on leaves and other herbaceous parts are common symptoms of disease, and often furnish clues to identification of causes, though it must be remembered that no sharp line divides this class of symptoms from the preceding. By far the greater number of spot-diseases are due to Fungi, as indicated by the numerous “leaf-diseases” described, but such is by no means always the case. The spot or patch is an area of injury; on (or in) it the cell-contents are suffering destruction from shading, blocking of stomata, loss of substance or direct mechanical injury, and the plant suffers in proportion to the area of leaf surface put out of action. It is somewhat artificial to classify these diseases according to the colour of the spots, and often impossible, because the colour may differ according to the age of the part attacked and the stage of injury attained; many Fungi, for instance, induce yellow spots which become red, brown or black as they get older, and so on. White or grey spots may be due to Peronospora, Erysiphe, Cystopus, Entyloma and other Fungi, the mycelium of which will be detected in the discoloured area; or they may be scale insects, or the results of punctures by Red-spider, &c. Yellow spots, and especially bright orange spots, commonly indicate Rust Fungi or other Uredineae; but Phyllosticta, Exoascus, Clasterosporium, Synchytrium, &c., also induce similar symptoms. Certain Aphides, Red-spider, Phylloxera and other insects also betray their presence by such spots. It is a very common event to find the early stages of injury indicated by pale yellow spots, which turn darker, brown, red, black, &c., later, e.g. Dilophia, Rhytisma, &c. Moreover, variegations deceptively like these disease spots are known, e.g. Senecio Kaempferi. Red spots may indicate the presence of Fungi, e.g. Polystigma, or insects, e.g. Phytoptus. Brown spots are characteristic of Phytophthora, Puccinia, &c., and black ones of Fusicladium, Ustilago, Rhytisma, &c. Both are common as advanced symptoms of destruction by Fungi and insects. Brilliantly coloured spots and patches follow the action of acid fumes on the vegetation near towns and factories, and such parti-coloured leaves often present striking resemblance to autumn foliage. Symptoms of scorching owing to abnormal insolation—e.g. in greenhouses where the sun's rays are concentrated on particular spots—and a certain class of obscure diseases, such as “silver-leaf” in plums, “foxy leaves” in various plants, may also be placed here.

3. Wounds.—The principal phenomena resulting from a simple wound, and the response of the irritated cells in healing by cork and in the formation of callus, have been indicated above. Any clean cut, fracture or bruise which injures the cambium over a limited area is met with the same response. The injured cells die and turn brown; the living cells beneath grow out, and form cork, and under the released pressure bulge outwards and repeatedly divide, forming a mass of succulent regenerative tissue known as callus. Living cells of the pith, phloem, cortex, &c., may also co-operate in this formation of regenerative tissue, and if the wound is a mere knife-cut in the “bark,” the protruding lips of callus formed at the edges of the wound soon meet, and the slit is healed over—occluded. If a piece of bark and cortex are torn off, the occlusion takes longer, because the tissues have to creep over the exposed area of wood; and the same is true of a transverse cut severing the branch, as may be seen in an properly pruned tree. Wounds may be artificially grouped under such heads as the following: Burrows and excavations in bark and wood due to boring insects, especially beetles. Breakages and abrasions due to wind, snow, lightning, and other climatic agents. Cuts, breakages, &c., due to man and other vertebrate animals. Erosions of leaves and herbaceous parts by caterpillars, slugs, earwigs and so forth. Frost-cracks, scorching of bark by sun and fire, &c., and