This page has been proofread, but needs to be validated.
CYTOLOGY]
PLANTS
767

parts of the nucleus depend to some extent upon their chemical constitution. The chromatin is practically identical with nuclein. This has a strong attraction for basic aniline dyes, and can usually be distinguished from other parts of the cell which are more easily coloured by acid anilines. But the staining reactions of nuclei may vary at different stages of their development; and it is probable that there is no method of staining which differentiates with certainty the various morphological constituents of the nucleus.

Our knowledge of the chemical constitutions of the nucleus is due to the pioneer researches of Sir Lauder Brunton, Plosz, Miescher, Kossel and a host of more recent investigators. Nuclein is a complex albuminoid substance containing phosphorus and iron in organic combination (Macallum). It appears to be a combination of a protein with nucleic acid. Recent researches have shown that the nucleic acid can be broken up by chemical means into a number of different compounds or bases. The results at first obtained were very confusing and seemed to show that nucleic acid is very variable in constitution, but thanks to the work of Schmiedeberg and Stendel (Germany), Ivar Bang (Sweden) and Walter Jones and Levene (America), the confusion has been reduced to some sort of order, and it now seems probable that all ordinary nucleic acids yield two purine bases, adenine and guanine; two pyrimidine bases, cytosine and thymine and a hexose carbohydrate, the identity of which is uncertain.[1]

The Nucleolus.—In the majority of plant-nuclei, both in the higher and lower plants, there is found, in addition to the chromatin network, a deeply stained spherical or slightly irregular body (sometimes more than one) called the nucleolus (fig. 2, A to D). It is often vacuolar, sometimes granular, and in other cases it is a homogeneous body with no visible structure or differentiation. The special function of this organ has been a source of controversy during the past few years, and much uncertainty still exists as to its true nature. It forms a part of the linin or plastin network of the nucleus and may become impregnated with varying quantities of chromatin stored up for use in the formation of the chromosomes and other nuclear activities. The relation of the nucleolus to the chromosomes is clearly seen in the reconstruction of the daughter nuclei after division in the cells of the root-apex of Phaseolus (fig. 1, A to F). The chromosomes (fig. 1, A) unite to form an irregular mass (fig. 1, B) out of which is evolved the nucleolus and nuclear network (figs. 1, E, F) by a fusion of the chromosomes (fig. 1, C, D).

Centrosome.—The centrosome is a minute homogeneous granule found in the cytoplasm of some cells in the neighbourhood of the nucleus. It is generally surrounded by a granular or radiating cytoplasmic substance. In plant cells its presence has been demonstrated in the Thallophytes and Bryophytes. In the higher plants the structures which have been often described as centrosomes are too indefinite in their constitution to allow of this interpretation being placed upon them, and many of them are probably nothing more than granules of the fragmented nucleolus. The centrosomes in plants do not appear to be permanent organs of the cell. They are prominent during cell-division, but many disappear in the resting stage. They are more easily seen, when the nucleus is about to undergo mitosis, at the ends of the spindle, where they form the centres towards which the radiating fibres in the cytoplasm converge (see fig. 7, E G). The centrosome or centrosphere is usually regarded as the dynamic centre of the cell and a special organ of division; but its absence in many groups of plants does not lend support to this view so far as plant-cells are concerned.

Nuclear Division.—The formation of new cells is, in the case of uninucleate cells, preceded by or accompanied by the division of the nucleus. In multinucleate cells the division of the nucleus is independent of the division of the cell. Nuclear division may be indirect or direct, that is to say it may either be accompanied by a series of complicated changes in the nuclear structures called mitosis or karyokinesis (fig. 2), or it may take place by simple direct division, amitosis, or fragmentation. Direct division is a much less common phenomenon than was formerly supposed to be the case. It occurs most frequently in old cells, or in cells which are placed under abnormal conditions. It may also take place where rapid proliferation of the cell is going on, as in the budding of the Yeast plant. It takes place in the internodal cells of Characeae; in the old inter nodalcells of Tradescantia; and in various other cells which have lost their power of division. It has been shown that, in cells of Spirogyra placed under special conditions, amitotic division can be induced, and that normal mitosis is resumed when they are placed again under normal conditions. Amitosis is probably connected by a series of intermediate gradations with karyokinesis.

Fig. 1.—Reconstruction of the daughter nuclei of Phaseolus.

Mitosis.—In indirect nuclear division the nucleus undergoes a series of complicated changes, which result in an equal division of the chromatic substance between the two daughter nuclei. Four stages can be recognized. (1) Prophase.—The nucleus increases in size; the network disappears, and a much convoluted thread takes its place (fig. 2, B). The chromatin substance increases in amount; the thread stains more deeply, and in most cases presents a homogeneous appearance. This is commonly called the spirem-figure. The chromatin thread next becomes shorter and thicker, the nucleoli begin to disappear, and the thread breaks up into a number of segments—chromosomes—which vary in number in different species, but are fairly constant in the same species (fig. 2, C, D). Coincident with these changes the nuclear membrane disappears and a spindle-shaped or barrel shaped group of threads makes its appearance in the midst of the chromosomes, the longitudinal axis of which is at right angles to the plane of the division (fig. 2, F). At each pole of this spindle figure there often occur fibres radiating in all directions into the cytoplasm, and sometimes a minute granular body, the centrosome, is also found there. (2) Metaphase.—The chromosomes pass to the equator of the spindle and become attached to the

  1. See Halliburton. Science Progress in the 20th Century (1909), vol. iv.