This page has been proofread, but needs to be validated.
840
RAILWAYS
[CONSTRUCTION

passengers and goods are generally in different and sometimes in distant positions, the place selected for each being that which is most convenient for the traffic. The passenger station abuts on the main line, or, at termini, forms the natural terminus, at a place as near as can conveniently be obtained to the centre of the, population which constitutes the passenger traffic; and preferably its platforms should be at or near the ground level, for convenience of access. The goods station is approached by a siding or fork set off from the main line at a point short of the passenger station. In order to keep down the expense of shunting the empty trains and engines to and from the platforms the carriage and locomotive depots should be as near the passenger station as possible; but often the price of land renders it impracticable to locate them in the immediate vicinity and they are to be found at a distance of several miles.

In laying out the approaches and station yard of a passenger station ample width and space should be provided, with well-definedPassenger station. means of ingress and egress to facilitate the circulation of vehicles and with along setting-down pavement to enable them to discharge their passengers and luggage without delay. The position of the main buildings—ticket offices, waiting and refreshment-rooms, parcels offices, &c.—relative to the direction of the lines of rails may be used as a means of classifying terminal stations. They are placed either on the departure side parallel to the platform (“side” stations) or at right angles to the rails and platforms (“end” stations). Many large stations, however, are of a mixed type, and the offices are arranged in a fork between two or more series of platforms, or partly at the end and partly on one side. Where heavy suburban traffic has to be dealt with, the expedient is occasionally adopted of taking some of the lines round the end in a continuous loop, so that incoming trains can deposit their passengers at an underground platform and immediately proceed on their outward journey. Intermediate stations, like terminal ones, should be convenient in situation and easy of approach, and, especially if they are important, should be on the ground level rather than on an embankment or in a cutting. The lines through them should be, if possible, straight and on the level; the British Board of Trade forbids them being placed on a gradient steeper than 1 in 260, unless it is unavoidable. Intermediate stations at the surface level are naturally constructed as side stations, and whether offices are provided on both sides or whether they are mainly concentrated on one will depend on local circumstances, the amount of the traffic, and the direction in which it preponderates. When the railway lies below the surface level the bulk of the offices are often placed on a bridge spanning the lines, access being given to the platforms by staircases or lifts, and similarly when the railway is at a high level the offices may be arranged under the lines. Occasionally on a double-track railway one platform placed between the tracks serves both of them; this “island” arrangement, as it is termed, has the advantage that more tracks can be readily added without disturbance of existing buildings, but when it is adopted the exit from the trains is at the opposite side to that which is usual, and accidents have happened through passengers alighting at the usual side without noticing the absence of a platform. At stations on double-track railways which have a heavy traffic four tracks are sometimes provided, the two outside ones only having platforms, so that fast trains get a clear road and can pass slow ones that are standing in the station. In Great Britain, it may be noted, trains almost invariably keep to the left, whereas in most other countries right-handed running is the rule.

The arrangement and appropriation of the tracks in a station materially affect the economical and efficient working of the traffic. There must be a sufficient provision of sidings, connected with the running tracks by points, for holding spare rolling stock and to enable carriages to be added to or taken off trains and engines to be changed with as little delay as possible. At terminal stations, especially at such as are used by short-distance trains which arrive at and start from the same platform, a third track is often laid between a pair of platform tracks, so that the engine of a train which has arrived at the platform can pass out and place itself at the other end of the train, which remains undisturbed. At the new Victoria station (London) of the London, Brighton & South Coast railway—which is so long that two trains can stand end to end at the platforms—this system is extended so as to permit a train to start out from the inner end of platform even another train is occupying the outer end. One of the advantages of electric trains on the multiple control system they economize terminal accommodation, because they driven from either end indifferently, and therefore avoid the necessity for tracks by which engines can change from one end of the train to the other.

The platforms on British railways have standard elevation of 3 ft. above rail level, and they are not now made less than 2½ ft. in height. In other countries they are generally lower; in the United States they are commonly level with, or only a few inches higher than, the top of the rails. They may consist of earth with a retaining wall along the tracks and with the surface gravelled or paved with stone or asphalt, or they may be constructed entirely of timber, or they may be formed of stone slabs supported on longitudinal walls. They should be of ample dimensions to accommodate the traffic—the British Board of Trade requires them to be not less than 6 ft. wide at small stations and not less than 12 ft. wide at large ones—and they should be as free as possible from obstructions, such as pillars supporting the roof. At intermediate stations the roofs are often carried on brackets fixed to the walls of the station buildings, and project only to the edge of the platforms. At larger stations where both the platforms and the tracks are covered in, there are two broad types of construction, with many intermediate variations: the roof may either be comparatively low, of the “ridge and furrow” pattern, borne on a number of rows of pillars, or it may consist of a single lofty span extending clear across the area from the side walls. The advantage claimed for roofs formed with one or two large spans is that they permit the platforms and tracks to be readily rearranged at any time as required, whereas this is difficult with the other type, especially since the British Board of Trade requires the pillars to be not less than 6 ft. away from the edges of the platforms. On the other hand, wide spans are more expensive both in first cost and in maintenance, and there is the possibility of a failure such as caused the collapse in December 1905 of the roof of Charing Cross (S.E.R.) station, London, which then consisted of a single span. Whatever the pattern adopted for the roof, a sufficient portion of it must be glazed to admit light, and it should be so designed that the ironwork can be easily inspected and painted and the glass readily cleaned. For the illumination of large stations by night electric arc lamps are frequently employed, but some authorities favour high-pressure incandescent gas-lighting.,

At busy stations separate tracks are sometimes appropriated to the use of light engines and empty trains, on which, they mayLocomotive depots. be run between the platforms and the locomotive and, carriage depots. A carriage depot includes sheds in which the vehicles are stored, arrangements for washing and cleaning them, and sidings on which they are marshalled into trains. At a locomotive depot the chief building is the “running shed” in which the engines are housed and cleaned. This may be rectangular in shape (“straight” shed), containing a series of parallel tracks on which the engines stand and which are reached by means of points and crossings diverging from a main track outside; or it may take a polygonal or circular form (round house or rotunda), the lines for the engines radiating from a turn-table which occupies the centre and can be rotated so as to serve any of the radiating lines. The second arrangement enables any particular engine to, enter or leave without disturbing the other; but on the other hand an accident to the turn-table may temporarily imprison the whole of them. In both types pits are constructed between the rails