This page has been proofread, but needs to be validated.
PLANTS]
REPRODUCTION
125

gametophyte, and the sporophyte is represented only by the oospore, so that the life-history resembles that of Nemalion. It is probable that this conclusion is generally true of the whole group; at any rate of those forms (Desmids, Spirogyra, Oedogonium, Chara) which have been more or less investigated.

Turning to the Fungi, somewhat similar results have been obtained in the few forms that have been studied from this point of view. In the sexual Ascomycetes it appears (Harper) that meiosis takes place in the ascocarp just before the development of the spores, so that the life-history essentially resembles that of Nemalion. Again, in certain Uredineae, having an aecidium-stage and a teleutospore-stage, which is apparently a sexual process has been observed (Blackman, Christman) which is described in the section on Abnormalities of Reproduction, and the life-history is as follows. The sexual act having taken place, a row of aecidiospores is developed in the aecidium, each of which contains two conjugate nuclei derived from the sexual nuclei. The mycelium developed from the aecidiospore, as well as the uredospores and the teleutospores that it bears, shows two conjugate nuclei. When, however, the teleutospore is about to germinate, the two nuclei fuse (thus completing the sexual act) and meiosis takes place. As a result the promycelium developed from the teleutospore, and the sporidia that it produces, are uninucleate: so are also the mycelium developed from the sporidium, and the female organs (archicarps) borne upon it. Hence the limits of the sporophyte are the aecidiospore and the teleutospore: those of the gametophyte, the teleutospore and the aecidiospore.

Similar observations have been made upon other Uredineae with a more contracted life-history. Phrogmidium Potentillae-canadensis is a rust that has no aecidium-stage: consequently the primary uredospores are borne by the mycelium produced on infection of the host by a sporidium. It has been observed (Christman) that the sporogenous hyphae fuse in pairs, suggesting a sexual act; then the primary uredospores are developed in rows from the fused pairs of hyphae which thus behave as sexual organs (archicarps), and each such uredospore contains two conjugate nuclei. Although the research has not been carried beyond this point, it may be inferred that in this case, as in the preceding, nuclear fusion and meiosis take place in the teleutospore. Here the sporophyte is represented by the uredo-form.

Finally, in some of the fungi in which no sexual organs have yet been discovered, this method of investigation has made it probable that some kind of sexual act takes place nevertheless. Thus in the Uredine Puccinia malvacearum, which has only teleutospore- and sporidium-stages, it has been observed (Blackman) that the formation of the teleutospores is preceded by a binucleate condition of the hyphae. The same idea is suggested by the binucleate basidia of the Basidiomycetes, which correspond to the teleutospores of the Uredineae.

The life-histories sketched in the preceding paragraphs show that one of the complexities met with in the Thallophyta is that meiosis does not always take place at the same point in the life-history. In the higher plants the incidence of meiosis is generally, though not absolutely, constant: it may be stated as a rule that in the Bryophyta, Pteridophyta and Phanerogams it takes place in the spore-mother-cells. In the Thallophyta this rule does not hold. In some of them, it is true, meiosis immediately precedes, as in the higher plants, the formation of certain spores, the tetra spores (Dictyotaceae, Polysiphonia), the teleutospores (Uredineae): but in others it immediately precedes the development of the sexual organs (Fucaceae), or follows more or less directly upon the sexual act (Green Algae, Nemalion, Ascomycetes).

The life-history of most Thallophyta is further complicated by the capacity of the gametophyte of the sporophyte to reproduce themselves by cells termed gonidia, a capacity that is wholly lacking in the higher plants. The karyology of gonidia has not yet been sufficiently investigated: but when, as in the Green Algae and the Oemycetous Fungi, the gonidia are developed by and reproduce the gametophyte, it may be inferred that they, like the gametophyte, are haploid. One case, at any rate, of the reproduction of the sporophyte by gonidia is fully known, that of the Uredineae just described, in which the uredoform, which is a phase of the sporophyte, is reproduced by the uredo-spores which are binucleate, that is diploid, and may be distinguished as diplogonidia. In any case the result is that whereas in the higher plants each of the alternating generations occurs but once in the life-history, in these Thallophyta the life-history may include a succession of gametophytic or of sporophytic forms. This is, in fact, a distinguishing feature of the group. The higher plants present a regular alternation of generations: whereas, in the Thallophyta, though they probably all present some kind of alternation of generations, yet it is irregular in the various ways and for the various reasons mentioned above.

Sufficient information has been given in the preceding pages to render possible the consideration of the origin of alternation of generations. To begin quite at the beginning, it may be assumed that the primitive form of reproduction was purely vegetative, merely division of the unicellular organism when it had attained the limits of its own growth. Following on this came reproduction by a gonidium: that is, the protoplasm of the cell, at the end of its vegetative life, became quiescent, surrounded itself with a proper wall, or was set free as a motile ciliated cell, having in some unexplained way become capable of originating a new course of life (rejuvenescence) on germination. Then, as can be well traced in the Brown and Green Algae (see Algae), these primitive reproductive cells (gonidia) began to fuse in pairs: in other words, they gradually became sexual. This stage can still be observed in some of these Algae (e.g. Ulothrix, Ectocarpus) where the zoo spores (gonidia) may either germinate independently, or fuse in pairs to form a zygote. Gradually the sexuality of these cells became more pronounced: losing the capacity for independent germination, they acquired the external characters of more or less differentiated sexual cells, and the gametangia producing them developed into male and female sexual organs. But this advancing sexual differentiation did not necessarily deprive the plant of the primitive mode of propagation: the sexual organism still retained the faculty of reproduction by gonidia. The loss of this faculty only came with higher development: it is entirely wanting in some of the higher Thallophyta (e.g. Fucaceae, Characeae), and in all plants above them in the evolutionary series.

With the introduction of the sexual act, a new kind of reproductive cell made its appearance, the zygote. This cell, as already explained, differs from other kinds of spores and from the sexual cells, in that its neculeus is diploid; and with it the sporophyte (diplophyte) was introduced into the life-history. It has been mentioned that in some plants (e.g. Green Algae) the zygote is all that there is to represent the sporophyte, giving rise, or germination and after meiosis, to one or more spores. Passing to the Bryophyta, in the simpler forms (e.g. Riccia), the zygote develops into a multicellular capsule (sporogonium); and in the higher forms into a more elaborate sporogonium, producing many spores. In the Pteridophyta and the Phanerogams, the zygote gives rise to the highly developed sporophytic plant.

Thus the evolution of the sporophyte can be traced from the unicellular zygote, gradually increasing in bulk and in independence until it becomes the equal of the gametophyte (e.g. in Dictyota and Polysiphonia), and eventually far surpasses it (Pteridophyta, Phanerogams). Moreover, the increase in size was attended by the gradual limitation of spore-production to certain parts only, the rest of the tissues being vegetative, assuming the form of stems, leaves, &c. These facts have been formulated in the theory of “progressive sterilization” (Bower), which states that the sporophytic form of the higher plants has been evolved from the simple, entirely fertile, sporophyte of the lower, by the gradually increasing development of the sterile vegetative tissue at the expense of the sporogenous, accompanied by increase in total bulk and in morphological and histological differentiation.

In connexion with the study of the evolution of the sporophyte,