This page has been proofread, but needs to be validated.
620
UNITED STATES
[PHYSICAL GEOGRAPHY


sub-arid climate excludes tree growth and opens far-reaching views. The plains are by no means a simple unit; they are of diverse structure and of various stages of erosional development; they are occasionally interrupted by buttes and escarpments; they are frequently broken by valleys: yet on the whole a broadly extended surface of moderate relief so often prevails that the name, Great Plains, for the region as a whole is well deserved. The western boundary of the plains is usually well defined by the abrupt ascent of the mountains. The eastern boundary of the plains is more climatic than topographic. The line of 20 in. of annual rainfall trends a little east of northward near the 97th meridian, and if a boundary must be drawn where nature presents only a gradual transition, this rainfall line may be taken to divide the drier plains from the moister prairies. The plains may be described in northern, intermediate, central and southern sections, in relation to certain peculiar features.

The northern section of the Great Plains, north of latitude 44°, including eastern Montana, north-eastern Wyoming and most of the Dakotas, is a moderately dissected peneplain, one of the best examples of its class. The strata here are Cretaceous or early Tertiary, lying nearly horizontal. The surface is shown to be a plain of degradation by a gradual ascent here and there to the crest of a ragged escarpment, the cuesta-remnant of a resistant stratum; and by the presence of lava-capped mesas and dike-ridges, surmounting the general level by 500 ft. or more and manifestly demonstrating the widespread erosion of the surrounding plains. All these reliefs are more plentiful towards the mountains in central Montana. The peneplain is no longer in the cycle of erosion that witnessed its production; it appears to have suffered a regional elevation, for the rivers—the upper Missouri and its branches—no longer flow on the surface of the plain, but in well graded, maturely opened valleys, several hundred feet below the general level. A significant exception to the rule of mature valleys occurs, however, in the case of the Missouri, the largest river, which is broken by several falls on hard sandstones about 50 m. east of the mountains. This peculiar feature is explained as the result of displacement of the river from a better graded preglacial valley by the Pleistocene ice-sheet, which here overspread the plains from the moderately elevated Canadian highlands far on the north-east, instead of from the much higher mountains near by on the west. The present altitude of the plains near the mountain base is 4000 ft.

The northern plains are interrupted by several small mountain areas. The Black Hills, chiefly in western South Dakota, are the largest group: they rise like a large island from the sea, occupying an oval area of about 100 m. north-south by 50 m. east-west, reaching an altitude in Harney Peak of 7216 ft., and an effective relief over the plains of 2000 or 3000 ft. This mountain mass is of flat-arched, dome-like structure, now well dissected by radiating consequent streams, so that the weaker uppermost strata have been erode down to the level of the plains where their upturned edges are evenly truncated, and the next following harder strata have been sufficient eroded to disclose the core of underlying crystalline rocks in about half of the domed area.

In the intermediate section of the plains, between latitudes 44° and 42°, including southern South Dakota and northern Nebraska, the erosion of certain large districts is peculiarly elaborate, giving rise to a minutely dissected form, known as “bad lands,” with a relief of a few hundred feet. This is due to several causes: first, the dry climate, which prevents the growth of a grassy turf; next, the fine texture of the Tertiary strata in the bad land districts; and consequently the success with which every little rill, at times of rain, carves its own little valley. Travel across the bad lands is very fatiguing because of the many small ascents and descents; and it is from this that their name, “mauvaises terres pour traverse,” was given by the early French voyageurs.

The central section of the Great Plains, between latitudes 42° and 36°, occupying eastern Colorado and western Kansas, is, briefly stated, for the most part a dissected fluviatile plain; that is, this section was once smoothly covered with a gently sloping plain of gravel and sand that had been spread far forward on a broad denuded area as a piedmont deposit by the rivers which issued from the mountains; and since then it has been more or less dissected by the erosion of valleys. The central section of the plains thus presents a marked contrast to the northern section; for while the northern section owes its smoothness to the removal of local gravels and sands from a formerly uneven surface by the action of degrading river sand their inflowing tributaries, the southern section owes its smoothness to the deposition of imported gravels and sands upon a previously uneven surface by the action of aggrading rivers and their outgoing distributaries. The two sections are also unlike in that residual eminences still here and there surmount the peneplain of the northern section, while the fluviatile plain of the central section completely buried the pre-existent relief. Exception to this statement must be made in the south-west, close to the mountains in southern Colorado, where some lava-capped mesas (Mesa de Maya, Raton Mesa) stand several thousand feet above the general plain level, and thus testify to the widespread erosion of this region before it was aggraded.

The southern section of the Great Plains, between latitudes 35½° and 29½°, lies in eastern Texas and eastern New Mexico; like the central section it is for the most part a dissected fluviatile plain, but the lower lands which surround it on all sides place it in so strong relief that it stands up as a table-land, known from the time of Mexican occupation as the Llano Estacado. It measures roughly 150 m. east-west and 400 m. north-south, but it is of very irregular outline, narrowing to the south. Its altitude is 5500 ft. at the highest western point, nearest the mountains whence its gravels were supplied; and thence it slopes south-eastward at a decreasing rate, first about 12 ft., then about 7 ft. in a mile, to its eastern and southern borders, where it is 2000 ft. in altitude: like the High Plains farther north, it is extraordinarily smooth; it is very dry, except for occasional shallow and temporary water sheets after rains. The Llano is separated from the plains on the north by the mature consequent valley of the Canadian river, and from the mountains on the west by the broad and probably mature valley of the Pecos river. On the east it is strongly undercut by the retrogressive erosion of the headwaters of the Red, Brazos and Colorado rivers of Texas, and presents a ragged escarpment, 500 to 800 ft. high, overlooking the central denuded area of that state; and there, between the Brazos and Colorado rivers, occurs a series of isolated outliers capped by a limestone which underlies both the Llano on the west and the Grand Prairies cuesta on the east. The southern and narrow part of the table-land, called the Edwards Plateau, is more dissected than the rest, and falls off to the south in a frayed-out fault scarp, as already mentioned, overlooking the coastal plain of the Rio Grande embayment. The central denuded area, east of the Llano, resembles the east-central section of the plains in exposing older rocks; between these two similar areas, in the space limited by the Canadian and Red rivers, rise the subdued forms of the Wichita Mountains in Oklahoma, the westernmost member of the Ouachita system.

The Cordilleran Region.—From the western border of the Great Plains to the Pacific coast, there is a vast elevated area, occupied by mountains, plateaus and intermont plains. The intermont plains are at all altitudes from sea-level to 4000 ft.; the plateaus from 5000 to 10,000 ft.; and the mountains from 8000 to 14,000 ft. The higher mountains are barren from the cold of altitude; the timber line in Colorado stands at 11,000 to 12,000 ft.

The chief provinces of the Cordilleran region are: The Rocky Mountain system and its basins, from northern New Mexico northward, including all the mountains from the front ranges bordering on the plains to the Uinta and Wasatch ranges in Utah; the Pacific ranges including the Sierra Nevada of California, the Cascade range of Oregon and Washington, and the Coast range along the Pacific nearly to the southern end of California; and a great intermediate area, including in the north the Columbian lava plains and in the south the large province of the Basin ranges, which extends into Mexico and widens from the centre southward, so as to meet the Great Plains in eastern New Mexico, and to extend to the Pacific coast in southern California. There is also a province of plateaus between the central part of the Basin ranges and the southern part of the Rocky Mountains. An important geological characteristic of most of the Cordilleran region is that the Carboniferous strata, which in western Europe and the eastern United States contain many coal seams, are represented in the western United States by a marine limestone; and that the important unconformity which in Europe and the eastern United States separates the Palaeozoic and Mesozoic eras does not occur in the western United States, where the formations over a great area follow in conformable sequence from early Palaeozoic through the Mesozoic.

The Rocky Mountains begin in northern Mexico, where the axial crystalline rocks rise to 12,000 ft. between the horizontal structures The Rocky Mountains. of the plains on the east and the plateaus on the west. The upturned stratified formations wrap around the flanks of the range, with ridges and valleys formed on their eroded edges and drained southward by the Pecos river to the Rio Grande and the Gulf of Mexico. The mountains rapidly grow wider and higher northward, by taking on new complications of structure and by including large basins between the axes of uplift, until in northern Colorado and Utah a complex of ranges has a breadth of 300 m., and in Colorado alone there are 40 summits over 14,000 ft. in altitude, though none rises to 14,500. Then turning more to the north-west through Wyoming, the ranges decrease in breadth and height; in Montana their breadth is not more than 150 m., and only seven summits exceed 11,000 ft. (one reaching 12,834).

As far north as the gorge of the Missouri river in Montana, the Front range, facing the Great Plains, is a rather simple uplift, usually formed by upturning the flanking strata, less often by a fracture. Along the eastern side of the Front Range in Colorado most of the upturned stratified formations have been so well worn down that, except for a few low piedmont ridges, their even surface may now be included with that of the plains, and the crystalline core of the range is exposed almost to the mountain base. Here the streams that drain the higher areas descend to the plains through narrow canyons in the mountain border, impassable for ordinary roads and difficult of entrance even by railways; a well-known example is the gorge of Clear Creek east of the Georgetown mining district. The crystalline highlands thereabouts, at altitudes of 8000 to 10,000 ft., are of so moderate a relief as to suggest that the mass had stood much lower in a former cycle of erosion and had then been worn down to rounded hills; and that since uplift to the