This page has been proofread, but needs to be validated.
440
WEAVING
  

a sort of cylinder is formed.[1] The females of all the widow-birds differ greatly in appearance from the males, and are generally clothed in a plumage of mottled brown.

Usually classed with the weaver-birds is a vast group of small seed-eating forms, often called Spermestinae, but for which Estreldinae would seem to be a more fitting name. These comprehend the numerous species so commonly seen in cages, and known as amadavats, Estrelda amandava, nutmeg-birds, Munia punctularia, wax-bills, Pytelia melba and phoenicoptera, cutthroats, Amadina fasciata, the Java sparrow, Munia oryzivora and many others. Many of these genera are common to Africa and India, and some also to Australia.  (A. N.) 


WEAVING. The process of weaving consists in interlacing, at right angles, two or more series of flexible materials, of which the longitudinal are called warp and the transverse weft. Weaving, therefore, only embraces one section of the textile industry, for felted, plaited, netted, hosiery and lace fabrics lie outside this definition. Felting consists in bringing masses of loose fibres, such as wool and hair, under the combined influences of heat, moisture and friction, when they become firmly interlocked in every direction. Plaited fabrics have only one series of threads interlaced, and those at other than right angles. In nets all threads are held in their appointed places by knots, which are tied wherever one thread intersects another. Hosiery fabrics, whether made from one or many threads, are held together by intersecting a series of loops; while lace fabrics are formed by passing one set of threads between and round small groups of a second set of threads, instead of moving them from side to side. Notwithstanding the foregoing limitations, woven fabrics are varied in texture and have an enormous range of application. The demands made by prehistoric man for fabrics designed for clothing and shelter were few and simple, and these were fashioned by interlacing strips of fibrous material and grasses, which in their natural condition were long enough for the purpose in hand. But, as he passed from a state of savagery into a civilized being, his needs developed with his culture, and those needs are still extending. It no longer suffices to minister to individual necessities; luxury, commerce and numerous industries must also be considered.

The invention of spinning (q.v.) gave a great impetus to the introduction of varied effects; previously the use of multicoloured threads provided ornament for simple structures, but the demand for variety extended far beyond the limits of colour, and different materials were employed either separately or conjointly, together with different schemes of interlacing. Eventually the weaver was called upon to furnish articles possessing lustre, softness and delicacy; or those that combine strength and durability with diverse colourings, with a snowy whiteness, or with elaborate ornamentation. In cold countries a demand arose for warm clothing, and in hot ones for cooler materials; while commerce and industry have requisitioned fabrics that vary from normal characteristics to those that exceed an inch in thickness. In order to meet these and other requirements the world has been searched for suitable raw materials. From the animal kingdom, wool, hair, fur, feathers, silk and the pinna fibre have long been procured. From the vegetable kingdom, cotton, flax, hemp, jute, ramie and a host of other less known but almost equally valuable materials are derived. Amongst minerals there are gold, silver, copper, brass, iron, glass and asbestos. In addition, strips of paper, or skin, in the plain, gilt, silvered and painted conditions are available as well as artificial fibres. All of the foregoing may be used alone or in combination.

From such varied raw materials it is not surprising that woven fabrics should present an almost endless variety of effects; yet these differences are only in part due to the method of weaving. The processes of bleaching (q.v.), mercerizing (q.v.), dyeing (q.v.), printing (see Textile Printing) and finishing (q.v.) contribute almost as much to the character and effect of the resultant product as do the incorporation in one fabric of threads spun in different ways, and from fibres of different origin, with paper, metal, beads or even precious stones.

Industrial Technicology

All weaving schemes are reducible to a few elementary principles, but no attempted classification has been quite successful, for fabrics are constantly met with that possess characteristics supposed to be peculiar to one class, but lack, others which are deemed equally typical. Nevertheless, since some classification is essential, the following will be adopted, namely: Group 1, to include all fabrics made from one warp and one weft, provided both sets of threads remain parallel in the finished article and are intersected to give the requisite feel and appearance. Group 2, to include (a) fabrics constructed from two warps and one weft, or two wefts and one warp, as in those that are backed, reversible and figured with extra material; (b) two or more distinct fabrics built simultaneously from two or more warps and wefts, as in two, three and other ply cloths; (c) fabrics built by so intersecting two or more warps and wefts that only one texture results, as in loom-made tapestries and figured repps. Group 3, to include fabrics in which a portion of the weft or warp rises vertically from the groundwork of a finished piece, as in velveteens, velvets, plushes and piled carpets. Groups 4, to embrace all fabrics in which one portion of the warp is twisted partially, or wholly, round another portion, as in gauzes and lappet cloths. Although some fabrics do not appear to fall into any of the above divisions, and in others the essential features of two or more groups are combined, yet the grouping enumerated above is sufficiently inclusive for most purposes.

The fabrics included in Group 1 are affected by the nature and closeness of the yarns employed in their construction, by colour, or by the scheme of intersecting the threads. The most important section of this group is Plain Cloth, in which the warp and weft threads are approximately equal in thickness and closeness, and pass over and under each other alternately, as in fig. 1, which shows a design, plan and two sections of plain cloth. Such a fabric would, therefore, appear to admit of but slight ornamentation, yet this is by no means the case, for if thick and thin threads of warp and weft alternate, the resultant fabric may be made to assume a corrugated appearance on the face, while beneath it remains flat, as in poplins, repps and cords. A plan and a longitudinal section of a repp cloth is shown at fig. 2. Colour may also be employed to ornament plain fabrics, and its simplest application produces stripes and checks. But colour may convert these fabrics into the most artistic and costly productions of the loom, as is the case with tapestries, which are at once the oldest and most widely diffused of ornamented textiles. Tapestries only differ from simple plain cloth in having each horizontal line of weft made up of numerous short lengths of parti-coloured thread. Many fine specimens of this art have been recovered from ancient Egyptian and Peruvian tombs, and many are still produced in the Gobelins and other celebrated manufactories of Europe.


Fig. 1. — Plain Cloth.Fig. 2. — Repp Cloth.

Twills are next in importance to plain cloth on account of their wide range of application and great variety of effects; in elaborately figured goods their use is as extensive as where they provide the only ornament. Twills invariably form diagonal ribs in fabrics, and these are due to the intervals at which the warp and weft are intersected; thus two or more warp threads are passed over or under one or more than one weft thread in regular succession. Twills are said to be equal when similar quantities of warp and weft are upon the face of a fabric, unequal when one set of threads greatly preponderates over the other set, as in figs. 3, 4, which require four warp and weft threads to complete the scheme of intersections^ If the ribs form angles of 45 degrees, the warp and weft threads per, inch are about equal in number, but for an unequal twill the material most in evidence should be closest and finest. The angle formed may be greater or less than 45 degrees, as in figs. 5, 6; if greater, the warp preponderates, if less, the weft preponderates. Twills are simple and fancy; both terms refer to the schemes of intersecting. In the


  1. Both these species seem to have been first described and figured in 1600 by Aldrovandus (lib. xv. cap. 22, 23) from pictures sent to him by Ferdinando de' Medici, duke of Tuscany.