Page:Early Greek philosophy by John Burnet, 3rd edition, 1920.djvu/72

This page has been proofread, but needs to be validated.
58
EARLY GREEK PHILOSOPHY

the cold in winter, and this would lead in the long run to the destruction of everything but the Boundless itself, if there were not an inexhaustible supply of it from which opposites might continually be separated out afresh. We must picture, then, an endless mass, which is not any one of the opposites we know, stretching out without limit on every side of the world we live in.[1] This mass is a body, out of which our world once emerged, and into which it will one day be absorbed again.

17.The innumerable worlds. We are told that Anaximander believed there were "innumerable worlds in the Boundless,"[2] and we have to decide between the interpretation that, though all the worlds are perishable, there are an unlimited number of them in existence at the same time, and Zeller's view that a new world never comes into existence till the old one has passed away, so that there is never more than one world at a time. As this point is of fundamental importance, it will be necessary to examine the evidence carefully.

In the first place, the doxographical tradition proves that Theophrastos discussed the views of all the early philosophers as to whether there was one world or an infinite number, and there can be no doubt that, when he ascribed "innumerable worlds" to the Atomists, he meant coexistent and not successive worlds. Now, if he had classed two such different views under one head, he would

  1. I have assumed that the word ἄπειρον means spatially infinite, not qualitatively indeterminate, as maintained by Teichmüller and Tannery. The decisive reasons for holding that the sense of the word is "boundless in extent" are as follows: (1) Theophrastos said the primary substance of Anaximander was ἄπειρον and contained all the worlds, and the word περιέχειν everywhere means "to encompass," not, as has been suggested, "to contain potentially." (2) Aristotle says (Phys. Γ, 4. 203 b 23) διὰ γὰρ τὸ ἐν τῇ νοήσει μὴ ὑπολείπειν καὶ ὁ ἀριθμὸς δοκεῖ ἄπειρος εἶναι καὶ τὰ μαθηματικὰ μεγέθη καὶ τὰ ἔξω τοῦ οὐρανοῦ· ἀπείρου δ' ὄντος τοῦ ἔξω, καὶ σῶμα ἄπειρον εἶναι δοκεῖ καὶ κόσμοι. The mention of σῶμα shows that this does not refer to the Atomists. (3) Anaximander's theory of the ἄπειρον was adopted by Anaximenes, and he identified it with Air, which is not qualitatively indeterminate.
  2. Cf. [Plut.] Strom. fr. 2 (R. P. 21 b).