Page:Eddington A. Space Time and Gravitation. 1920.djvu/191

This page has been proofread, but needs to be validated.
XI]
ELECTRICITY AND GRAVITATION
175

changes which would be imperceptible to direct measurement. It will be remembered that the gravitational field is likewise perceived by the consequential effects, and not by direct interval-measurement.

But the theory does appear to require that, for example, the time of vibration of an atom is not quite independent of its previous history. It may be assumed that the previous histories of terrestrial atoms are so much alike that there are no significant differences in their periods. The possibility that the systematic difference of history of solar and terrestrial atoms may have an effect on the expected shift of the spectral lines on the sun has already been alluded to. It seems doubtful, however, whether the effect could attain the necessary magnitude.

It may seem difficult to identify these abstract geometrical qualities of the world with the physical forces of electricity and magnetism. How, for instance, can the change in the length of a rod taken round a circuit in space and time be responsible for the sensations of an electric shock? The geometrical potentials () obey the recognised laws of electromagnetic potentials, and each entity in the physical theory—charge, electric force, magnetic element, light, etc.—has its exact analogue in the geometrical theory; but is this formal correspondence a sufficient ground for identification? The doubt which arises in our minds is due to a failure to recognise the formalism of all physical knowledge. The suggestion "This is not the thing I am speaking of, though it behaves exactly like it in all respects" carries no physical meaning. Anything which behaves exactly like electricity must manifest itself to us as electricity. Distinction of form is the only distinction that physics can recognise; and distinction of individuality, if it has any meaning at all, has no bearing on physical manifestations.

We can only explore the world with apparatus, which is itself part of the world. Our idealised apparatus is reduced to a few simple types—a neutral particle, a charged particle, a rigid scale, etc. The absolute constituents of the world are related in various ways, which we have studied, to the indications of these test-bodies. The main features of the absolute world are so simple that there is a redundancy of apparatus at our disposal; and probably all that there is to be known could theoretically