This page has been validated.

corresponding, in the manner specified in § 10, to the circular paths described in the other case.

§ 12. It remains to say some words about molecular motion. We may conceive that bodies in which this has a sensible influence or even predominates, undergo the same deformation as the systems of particles of constant relative position of which alone we have spoken till now. Indeed, in two systems of molecules Σ' and Σ, the first without and the second with a translation, we may imagine molecular motions corresponding to each other in such a way that, if a particle in Σ' has a certain position at a definite instant, a particle in Σ occupies at the corresponding instant the corresponding position. This being assumed, we may use the relation (33) between the accelerations in all those cases in which the velocity of molecular motion is very small as compared to w. In these cases the molecular forces may be taken to be determined by the relative positions, independently of the velocities of molecular motion. If, finally, we suppose these forces to be limited to such small distances that, for particles acting on each other, the difference of local times may be neglected, one of the particles, together with those which lie in its sphere of attraction or repulsion, will form a system which undergoes the often mentioned deformation. In virtue of the second hypothesis of § 8 we may therefore apply to the resulting molecular force acting on a particle, the equation (21). Consequently, the proper relation between the forces and the accelerations will exist in the two cases, if we suppose that the masses of all particles are influenced by a translation to the same degree as the electromagnetic masses of the electrons.

§ 13. The values (30) which I have found for the longitudinal and transverse masses of an electron, expressed in terms of its velocity, are not the same as those that have been formerly obtained by Abraham. The ground for this difference is solely to be sought in the circumstance that, in his theory, the electrons are treated as spheres of invariable dimensions. Now, as regards the transverse mass, the results of Abraham have been confirmed in a most remarkable way by Kaufmann's measurements of the deflexion of radium-rays in electric and magnetic fields. Therefore, if there is not to be a most serious objection to the theory I have now proposed, it must be possible to show that those measurements agree with my values nearly as well as with those of Abraham.

I shall begin by discussing two of the series of measurements