Page:Electronics Technician - Volume 7 - Antennas and Wave Propagation - NAVEDTRA 14092.pdf/25

This page has been proofread, but needs to be validated.

When the transmitting antenna is close to the ground, it should be polarized vertically, because vertically polarized waves produce a greater signal strength along the earth's surface. On the other hand, when the transmitting antenna is high above the ground, it should be horizontally polarized to get the greatest signal strength possible to the earth's surface.

RADIATION OF ELECTROMAGNETIC ENERGY

Various factors in the antenna circuit affect the radiation of electromagnetic energy. In figure 2-3, for example, if an alternating current is applied to the A end of wire antenna AB, the wave will travel along the wire until it reaches the B end. Since the B end is free, an open circuit exists and the wave cannot travel further. This is a point of high impedance. The wave bounces back (reflects) from this point of high impedance and travels toward the starting point, where it is again reflected. Theoretically, the energy of the wave should be gradually dissipated by the resistance of the wire during this back-and-forth motion (oscillation). However, each time the wave reaches the starting point, it is reinforced by an impulse of energy sufficient to replace the energy lost during its travel along the wire. This results in continuous oscillations of energy along the wire and a high voltage at the A end of the wire. These oscillations move along the antenna at a rate equal to the frequency of the rf voltage and are sustained by properly timed impulses at point A.


Figure 2-3.—Antenna and rf source.


The rate at which the wave travels along the wire is constant at approximately 300,000,000 meters per second. The length of the antenna must be such that a wave will travel from one end to the other and back again during the period of 1 cycle of the rf voltage.

The distance the wave travels during the period of 1 cycle is known as the wavelength. It is found by dividing the rate of travel by the frequency.

Look at the current and voltage distribution on the antenna in figure 2-4. A maximum movement of electrons is in the center of the antenna at all times; therefore, the center of the antenna is at a low impedance.


Figure 2-4.—Standing waves of current and voltage on an antenna.


This condition is called a STANDING WAVE of current. The points of high current and high voltage are known as current and voltage LOOPS. The points of minimum current and minimum voltage are known as current and voltage NODES. View A shows a current loop and two current nodes. View B shows two voltage loops and a voltage node. View C shows

2-3