Page:Elementary Principles in Statistical Mechanics (1902).djvu/16

This page has been proofread, but needs to be validated.
x
PREFACE.

phenomena distinctively thermodynamic, we do not escape difficulties in as simple a matter as the number of degrees of freedom of a diatomic gas. It is well known that while theory would assign to the gas six degrees of freedom per molecule, in our experiments on specific heat we cannot account for more than five. Certainly, one is building on an insecure foundation, who rests his work on hypotheses concerning the constitution of matter.

Difficulties of this kind have deterred the author from attempting to explain the mysteries of nature, and have forced him to be contented with the more modest aim of deducing some of the more obvious propositions relating to the statistical branch of mechanics. Here, there can be no mistake in regard to the agreement of the hypotheses with the facts of nature, for nothing is assumed in that respect. The only error into which one can fall, is the want of agreement between the premises and the conclusions, and this, with care, one may hope, in the main, to avoid.

The matter of the present volume consists in large measure of results which have been obtained by the investigators mentioned above, although the point of view and the arrangement may be different. These results, given to the public one by one in the order of their discovery, have necessarily, in their original presentation, not been arranged in the most logical manner.

In the first chapter we consider the general problem which has been mentioned, and find what may be called the fundamental equation of statistical mechanics. A particular case of this equation will give the condition of statistical equilibrium, i. e., the condition which the distribution of the systems in phase must satisfy in order that the distribution shall be permanent. In the general case, the fundamental equation admits an integration, which gives a principle which may be variously expressed, according to the point of view from which it is regarded, as the conservation of density-in-phase, or of extension-in-phase, or of probability of phase.