This page has been proofread, but needs to be validated.
  • Spigarelli, P. B., and Komar Kawatra, S. (2013). Opportunities and challenges in carbon dioxide capture (review). J. CO2 Utilization. 1, 69–87. doi:10.1016/j.jcou.2013.03.002
  • Suguira, K., Takei, K., Tanimoto, K., and Miyazaki, Y. (2003). The carbon dioxide concentrator by using MCFC. J. Power Sources 118, 218–227. doi:10.1016/S0378-7753(03)00084-3
  • Tanase, S., Miyazaki, Y., Yanagida, M., Tanimoto, K., and Kodama, T. (1987). “Numerical formulation of electrical conductance data of molten alkali carbonates”, in Progress Batteries & Solar Cells, 6th Edn, eds A. Kozawa, H. Shimotake, and E. Voss (Cleveland, OH: JEC Press), 195.
  • Tang, D., Yin, H., Mao, X., Xiao, W., and Wang D. H. (2013). Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode. Electrochim Acta. 114, 567–73. doi:10.1016/j.electacta.2013.10.109
  • Thybaud, N., and Lebain, D. (2010). Panorama des voies de valorisation du CO2. Report of the French Agency. ALCIMED, ADEME “Agence de l’Environnement et de la Maîtrise de l’Energie”. (PDF)
  • Wade, J. L., Lackner, K. S., and West, A. C. (2007). Transport model for a high temperature, mixed conducting CO2 separation membrane. Solid State Ionics. 178, 1530–1540. doi:10.1016/j.ssi.2007.09.007
  • Wang, C.-C., Zhang, Y.-Q., Li, J., and Wang, P. (2015). Photocatalytic CO2 reduction in metal–organic frameworks: a mini review. J. Mol. Struct. 1083, 127–136. doi:10.1016/j.molstruc.2014.11.036
  • Ward, A. T., and Janz, G. J. (1965). Molten carbonate electrolytes: electrical conductance, density and surface tension of binary and ternary mixtures. Electrochim. Acta 10, 849–857. doi:10.1016/0013-4686(65)80048-2
  • Washman, E. D. (2003). Electrolytic Reduction of CO2 to O2 and CO for ISRU with High Conductivity Solid Oxide Electrolytes. NASA Report Contract No. NAG 10-303.
  • White, J. L., Herb, T. J., Kaczur, J. J., Majsztrik, W. P., and Bocarsly, A. B. (2014). Photons to formate: efficient electrochemical solar energy conversion via reduction of carbon dioxide. J. CO2 Utilization. 7, 1–5. doi:10.1016/j.jcou.2014.05.002
  • Yamada, K., Nishina, T., and Uchida, I. (1995). Kinetic study of oxygen reduction in molten Li2CO3-Na2CO3 under pressurized conditions. Electrochim. Acta 12, 1927–1932. doi:10.1016/0013-4686(94)00328-X
  • Yamada, K., and Uchida, I. (1994). In-situ formation process of LiCoO2 in the molten lithium-potassium carbonate eutectic at 923 K. Chem. Lett. 2, 299–302. doi:10.1246/cl.1994.299
  • Yin, H., Mao, X., Tang, D., Xiao, W., Xing, L., Zhu, H., et al. (2013). Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis. Energy Environ. Sci. 6, 1538–1545. doi:10.1039/C3EE24132G
  • Yuh, C., Johnsen, R., Farooque, M., and Maru, H. (1995). Status of carbonate fuel cell materials. J. Power Sources 56, 1–12. doi:10.1016/0378-7753(95)80001-W
  • Zecevic, S., Patton, E. M., and Parhami, P. (2004). Carbone air fuel without a reforming process. Carbon N. Y. 42, 1983–1993. doi:10.1016/j.carbon.2004.03.036
  • Zhu, L., Wang, Y., Fang, Z., Sun, Y., and Huang Q. (2010). An effective heat dissipation method for densely packed solar cells under high concentrations. Solar Energy Mater Solar Cells. 94, 133–140. doi:10.1016/j.solmat.2009.08.014